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1.1 Sass, Not SASS
SCSS: Sassy CSS
Commenting
Importing
Nesting Selectors
The Parent Selector

Nesting Pitfalls



CSS is crafted to be simple,
but scaling simplicity is difficult.



At Scale

Slight variations of colors, fonts, numbers,
& other properties arise

Effective curbing of repetition can decline

Stylesheet size may become unmanageable



Enter Sass

© Syntactically Awesome Stylesheets

® Looks like CSS, but adds features to
combat shortcomings

® Preprocessor, like CoffeeScript & Haml:

> wal

Sass File Sass Compiler CSS File



Created by Hampton Catlin

Primary developers:
Nathan Weizenbaum & Chris Eppstein

Baked into Rails



Assembly Tip

SASS. Sass



1.2 SCSS: Sassy CSS
Commenting
Importing
Nesting Selectors
The Parent Selector

Nesting Pitfalls



Sassy CSS (. scss) is the default file extension
CSS is valid SCSS

A second syntax (. sass) exists, but we'll focus on SCSS
for the course



application.scss application.css

Smain: #444; .btn {
color: #444444;

.btn { display: block;

color: Smain; }

display: block; .btn-a {
} color: #919191;
.btn-a { }

color: lighten($main, 30%); .btn-a:hover {

& :hover ({ color: #aaaaaa;

color: lighten(Smain, 40%); }

}




Assembly Tip

Since CSS doubles as valid
SCSS, try writing styles
normally & slowly incorporate
new techniques.



Sass adds // for single line comments - not
output after compile



application.scss application.css

These comments will /* This comment will */
not be output to the
compiled CSS file

This comment will */




application.css

——

1.4 Importing



® The CSS @import rule has been avoided:
prevents parallel downloading

® @import With .scss or .sass happens
during compile rather than client-side

® File extension is optional



application.scss

// Imports styles found in 'buttons.scss'
// when the compiler processes application.scss

@import "buttons”;

w

-

application.scss application.css

= l buttowns.css 1S cveadted
even 1§ we ve WWP0Vting

buttons.css

w

buttons.scss



Partials

Adding an underscore creates a partial. Partials can be
imported, but will not compile to .css

— —
—— c=—="
—

appllcatlon SCSS application.css

Fl




application.scss

// Will import buttons.sass, buttons.sass,
// buttons.scss, or buttons.scss

@import "buttons';

w

-

application.scss application.css

w

_buttons.scss






R

application.css
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1.5 Nesting Selectors

!%I

&



application.scss application.css

.content { .content {
border: lpx solid #ccc; border: 1lpx solid #ccc;
padding: 20px; padding: 20px;

} }

.content h2 { .content h2 {
font-size: 3em; font-size: 3em;
margin: 20px 0; margin: 20px 0;

} }

.content p { .content p {
font-size: 1.5em; font-size: 1.5em;
margin: 15px O0; margin: 15px 0;

} }




application.scss

.content {
border: lpx solid #ccc;
padding: 20px;
h2 {
font-size: 3em;
margin: 20px 0;

}

p {
font-size: 1.5em;

margin: 15px 0;

}

application.css

.content {
border: 1lpx solid #ccc;
padding: 20px;

}

.content h2 {
font-size: 3em;
margin: 20px 0;

}

.content p {
font-size: 1.5em;
margin: 15px 0;



Nesting Properties

Certain properties with matching namespaces are nestable:

application.scss application.css

.btn { .btn {
text: { text-decoration: underline;
decoration: underline; text-transform: lowercase;
transform: lowercase; }

}

}




While nesting, the & symbol references the parent selector:

application.scss application.css

.content { .content {
border: 1lpx solid #ccc; border: 1lpx solid #ccc;
padding: 20px; padding: 20px;
.callout { }
border-color: red; .content .callout {
} border-color: red;
&.callout { }
border-color: green; .content.callout {
K border-color: green;

} }

veSferences:

.content




application.scss application.css

a { a {
color: #999; color: #999;
&:hover { }
color: #777; a:hover {

} color: #777;
&:active { }

color: #888; azactive {
} color: #888;




Parent Selector Nesting

Selectors can also be added before the & reference:

application.css

Ly

1.6 The Parent Selector



application.scss application.css

.sidebar { .sidebar {
float: right; float: right;
width: 300px; width: 300px;
.users & { }

width: @ 00px; .users .sidebar {
} width: 400px;

} veSerences: }

.Sidebayr




application.scss application.css

.sidebar { .sidebar {
float: right; float: right;
width: 300px; width: 300px;
h2 { }

color: #777; .sidebar h2 {
.users & { colome #7177;

color:#ddd; }
} .users .sidebar h2 {

} vefevences: color: #444;
.Sidebavr hz }




Nesting is easy, but dangerous

Do not nest unnecessarily



application.scss application.css

.content { .content {

background: #ccc; background: #ccc;
.cell { }

h2 { .content .cell h2 a:hover {

a { color: red;
& :hover } K

color: red;

damsevous\eve\o¥
S?ec’v?ic’\-l;\j




Assembly Tip

Try limiting your nesting to 3
or 4 levels and consider
refactoring anything deeper.






2.1 Variable Declaration ’bUse




Native CSS variable support is still in its infancy,
but Sass affords us a way to set reusable values

Variable names begin with §, like Sbase



application.scss application.css

Sbase: #777777; .Ssidebar
border:

.sidebar { }
border: 1lpx solid Sbase; . sidebar
color:

P {
color: S$base; }

}

{
lpx solid #777777;

p {
#777777;



The Default Flag

Variable definitions can optionally take the !default flag:

application.scss application.css

stitle: 'My Blog'; h2:before {
stitle: 'About Me'; content: 'About Me';

}
h2:before {

content: Stitle
}

ovevvides the
£ivst value




application.scss application.css

stitle: 'My Blog'; h2:before {
Stitle: 'About Me' !default; content: 'My Blog';

h2:before {
content: Stitle;

}

Since 3 value exists,
i+t 1SV + overwritten




application.scss _buttons.scss

i a value isn't

Srounded: 5px; Srounded: 3px !default; defined elsewhere
used by default

@import "buttons”; .btn-a {
border-radius: S$rounded;
color: #777;
}
.btn-b {
border-radius: S$Srounded;
color: #222;

}




application.scss

Srounded: 5px;

@import "buttons”;

application.css

.btn-a {

border-radius:

color: #777;

}
.btn-b {

border-radius:

color: #222;
}

5px;

5px;



Booleans

Srounded: false;

Sshadow: true;

Numbers - can be set with or without units:

Srounded: 4px;
Sline-height: 1.5;

Sfont-size: 3rem;




Colors

Sbase: purple;
Sborder: rgba(0,

Sshadow: #333;

Strings - can be set with or without quotes:

Sheader: 'Helvetica Neue';
Scallout: Arial;

smessage: "Loading...";




Lists

Sauthors: nick, dan, aimee, drew;

smargin: 40px 0 20px 100px;

Null

Sshadow: null;






application.scss application.css

p { Syntax error: Undefined

Sborder: #ccc; variable: "Sborder"
lpx solid S$border;

lpx solid Sborder;

$bovder isw + available
outside of ¢




Reassignment in a Declaration

Variables set inside a declaration (within { })aren't
usable outside that block

Setting new values to variables set outside a
declaration changes future instances



application.scss application.css

Scolor-base: #777777; .sidebar {
background: #222222;
.sidebar { }

Scolor-base: #222222; p {

background: S$color-base; color: #222222;

} }
p {

color: Scolor-base;

}

overwviting 3 varidble in 2
declavation 18 3\oba\




Jse the Ruby-esque #{S$variable} to shim variables
into selectors, property names, and strings:

application.scss application.css
Sside: top; sup {
position: relative;

sup { top: -0.5em;

position: relative; }

#{Sside}: -0.5em; .callout-top {
} background: #777;
.callout-#{Sside} { }

background: #777;

}




Assembly Tip

Be considerate of variable
naming. Scolor-base
gets a lot more mileage
than Scolor-blue.






3.1 Mixin Setup + Use
Adding Arguments
Multiple Arguments
Variable Arguments

Interpolation + Mixins



application.css
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3.1 Mixin Setup + Use



Mixins
Blocks of reusable code that take optional arguments:

_buttons.scss

@mixin button {
border: 1lpx solid #ccc;
font-size: lem;
text-transform: uppercase;




_buttons.scss application.css

@mixin button { .btn-a {
border: lpx solid #ccc; border: lpx solid #ccc;
font-size: lem; font-size: lem;
text-transform: uppercase; text-transform: uppercase;

} background: #777;

.btn-a { }
@include button; .btn-b {
background: #777; border: 1lpx solid #ccc;

} font-size: lem;

.btn-b { text-transform: uppercase;
@include button; background: #£f£fO0;
background: #£f£fO0; }

}




Assembly Tip

Make sure the @mixin block
comes before the @include,
especially when importing
files containing mixins.



Assembly Tip
@include = use a mixin

@import = import a file



_buttons.scss application.css

@mixin button { .btn-a {
border: 1lpx solid #ccc; border: 1lpx solid #cc¥€s
font-size: lem; font-size: lem; ]
text-transform: uppercase; text-transform: uppercase;

} background: #777;

.btn-a { }

@include button; .btn-b { W each declaration
background: #777; border: 1lpx solid #ccc; ]

repedting proyevties

} font-size: lem;

.btn-b { text-transform: uppercase;
@include button; background: #£ffO0;
background: #£f£O0; }

}




We're Just Repeating Properties

It's more efficient to use CSS here (for now):

application.css

Ly

3.1 Mixin Setup + Use



If that's the case, what are
mixins good for then?



R

application.css

g

3.2 Adding Arguments

WY'\"I;TV\S thvee
woStly-identical
Propevties gets old

-



application.scss application.css

@mixin box-sizing { .content {
-webkit-box-sizing: border-box; -webkit-box-sizing: border-bok;
-moz-box-sizing: border-box; -moz-box-sizing: border-box;
box-sizing: border-box; box-sizing: border-box;

} border: lpx solid #ccc;

.content { padding: 20px;

@include box-sizing; }

border: 1lpx solid #ccc;

padding: 20px;
} uwchahg’ma Pvorvevties

Still just copying




Arguments

Values passed into a mixin, potentially altering output:

application.scss

@mixin box-sizing($x) {
-webkit-box-sizing: $x;
-moz-box-sizing: $X;
box-sizing: $Xx;

}




application.scss application.css

@mixin box-sizing($x) { .content {
-webkit-box-sizing: $Xx; -webkit-box-sizing: border-box;
-moz-box-sizing: S$X; -moz-box-sizing: border-box;
box-sizing: $Xx; box-sizing: border-box;
} border: lpx solid #ccc;
.content { padding: 20px;
@include box-sizing(border-box); }
border: lpx solid #ccc; .callout {

padding: 20px; -webkit-box-sizing: content-box;

} -moz-box-sizing: content-box;

.ca}lout { . box-sizing: content-box;
@include box-sizing(content-box); }

}




Default Values

Optionally, what arguments will default to if not included:

application.scss

@mixin box-sizing(S$x: border-box) ({
-webkit-box-sizing: $x;
-moz-box-sizing: S$X;
box-sizing: $x;

}




application.scss application.css

@mixin box-sizing($x: border-box) { .content {
-webkit-box-sizing: $x; -webkit-box-sizing: border-box;
-moz-box-sizing: S$X; -moz-box-sizing: border-box;
box-sizing: $x; box-sizing: border-box;
} border: lpx solid #ccc;
.content { arguwent is passed padding: 20px;
@include box-sizing; }
border: lpx solid #ccc; .callout {
padding: 20px;

border-box 1§ wo

-webkit-box-sizing: content-box;
} -moz-box-sizing: content-box;

.ca}lout { . box-sizing: content-box;
@include box-sizing(content-box); }

}







_buttons.scss application.css

@mixin button(Sradius, $color) { .btn-a {
border-radius: S$radius; border-radius: 4px;
color: Scolor:; color: #000;

} }

.btn-a {

@include button(4px, #000);

} X

arguwments 3ve
commwa-Sepavated and
Passed i ovdev




_buttons.scss application.css

@mixin button(Sradius, $color) { Syntax error: Mixin button is

Sradius; missing argument $color.
Scolor;

}
.btn-a {

@include button(4px);
}

+too Sew avquwments




_buttons.scss application.css

@mixin button($radius, S$color: #000) { .btn-a {
border-radius: S$radius; border-radius: 4px;
color: Scolor:; color: #000;

%btn—a { optiondl second avrqument ;

@include button(4px);

}




_buttons.scss application.css

@mixin button($color: #000, Sradius) {

Syntax error: Required argument
Sradius;

Scolor must come before any

Scolor; optional arguments.

?btn—a ‘ optiondls come 13ast

@include button(4px);
}




_buttons.scss application.css

@mixin button($radius, S$color: #000) { .btn-a {
border-radius: Sradius; border-radius: 5px;
color: Scolor; color: #777777;

} }

.btn-a {

@include button(S$Scolor: #777777,

Sradius: 5px); R

R

ke\jwovd avquments 3llow
PassSing w any ovdevr




application.css
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3.4 Variable Arguments



Passing valid, comma-separated CSS as a single value:

_buttons.scss application.css

@mixin transition($val) { Mixin transition takes 1

sval; argument but 2 were passed.
sval;
sval;
}
.btn-a {
@include transition(color 0.3s
ease-1n, background 0.5s ease-out);

}




Adding ... to an argument creates a variable argument (vararg):

_buttons.scss application.css

@mixin transition($val...) { .btn-a {
-webkit-transition: Sval; -webkit-transition: color 0.3s
-moz-transition: Sval; ease-in, background 0.5s ease-out;
transition: Sval; -moz-transition: color 0.3s

} ease-1in, background 0.5s ease-out;

.btn-a { transition: color 0.3s ease-1in,
@include transition(color 0.3s background 0.5s ease-out;

ease-1n, background 0.5s ease-out); }

}




Variable arguments in reverse:

_buttons.scss

@mixin button(Sradius, Scolor) {
border-radius: $radius;
color: Scolor;

}

Sproperties: 4px, #000;

.btn-a { \A

@include button(Sproperties...);

}

Passes 3 1ist which 1S split
Wito arguments b\j the wmixin

application.css

.btn-a {
border-radius:
color: #000;

4px;



_buttons.scss application.css

@mixin highlight-t(Scolor) { .btn-a {

border-top-color: Scolor; border-right-color: #ff0;
I }
@mixin highlight-r(Scolor) {

border-right-color: $color;

}
@mixin highlight-b($color) {

border-bottom-color: Scolor;

}
@mixin highlight-1(Scolor) {
border-left-color: Scolor;

}
.btn-a {

@include highlight-r (#£00);
}




_buttons.scss application.css

@mixin highlight(Scolor, S$side) { .btn-a {
border-#{$side}-color: S$color; border-right-color: #f£f0;
} }
.btn-a {
@include highlight (#£00, right);

}




S~ EXTEND




4.1 Extend Setup + Use

Nesting + Extend
Extend Pitfalls

Placeholder Selectors



application.css application.css

—

4.1 Extend Setup + Use



Extend

Sass will track and automatically combine selectors for us:

_buttons.scss application.css

.btn-a { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem; border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;

} text-transform: uppercase;
.btn-b { }

@extend .btn-a; .btn-b {
background: #£ffO0; background: #£ffO0;

} }




.btn-a,

.btn-b
.btn-b { i {
@extend .btn-a; }
background: #f£f£0; .btn-b {

; . adds 3 secownd declaratiown
} for unique values




application.scss application.css

.content { .content,
border: lpx solid #ccc; .callout {
padding: 20px; border: lpx solid #ccc;
h2 { padding: 20px;
font-size: 3em; }
margin: 20px 0; .content h2,
} .callout h2 {
} font-size: 3em;
.callout { margin: 20px 0;
@extend .content; }
background: #ddd; .callout {
} background: #ddd;




.content,
.callout {

}
.callout { ‘ .content h2,
@extend .content;

.callout h2 {

background: #ddd;
} )
.callout {







_buttons.scss application.css

.btn-a { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem; border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;
} text-transform: uppercase;
.btn-b { }
@extend .btn-a; .btn-b {
background: #£f£0; background: #£f£0;
} }
.sSlidebar .btn-a { .sidebar .btn-a, btwn-b s also
text-transform: lowercase; .sidebar .btn-b { <—-_'
scoped heve

text-transform: lowercase;

}




Since .btn-b extends .btn-a, every instance that
modifies .btn-a also modifies .btn-b

Stylesheet bloat, if these extra styles aren't needed

We can counteract with placeholder selectors



Assembly Tip

Always, always check the CSS
output of your Sass before
using it on a live site.



Placeholder selectors are denoted with a &

Can be extended, but never become a selector of
their own



_buttons.scss application.css

.btn-a { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem: border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;

} text-transform: uppercase;
.btn-b { }
@extend .btn-a; .btn-b {
background: #£f£fO0; background: #£f£fO0;
} }
.sldebar .btn-a { .sidebar .btn-a,
text-transform: lowercase; .slidebar .btn-b {

text-transform: lowercase;




_buttons.scss application.css

Tbtn { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem: border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;
} text-transform: uppercase;
.btn-a { }
@extend %btn; .btn-b {
} background: #£f£fO0;
.btn-b { }
@extend %btn; .sidebar .btn-a {
background: #£f£0; text-transform: lowercase;
} }
.slidebar .btn-a { bEn-b 1S no

text-transform: lowercase; orney sco?ed
9




Extend common blocks to avoid extra HTML classes:

application.scss application.css

$ir { .logo,
border: 0; .social {
font: 0/0 a; border: 0;
text-shadow: none; font: 0/0 a;
color: transparent; text-shadow: none;

background-color: transparent; color: transparent;
} background-color: transparent;

.logo { }
@extend %ir;

}

.social {
@extend %ir;

}




Assembly Tip

Versions of IE prior to 9 have
a limit of 4095 selectors-per-

CSS file limit.



2 DIRECTIVE




5.1 Functions




Responsive Refresher

Straight from Journey Into Mobile:

target / context

If the target size of our sidebar is 350px and the
context of its parent is 1000px:

350px / 1000px = 0.35

0.35 * 100 = 35%




application.scss application.css

@function fluidize() {
@return 35%;

.sidebar {
width: 35%;

} dlways vetuvns 35/, }
.slidebar {

width: fluidize();
}




application.scss application.css

@function fluidize($target, S$context) {

@return (Starget / Scontext) * 100%;
} }
.slidebar {

width: fluidize(350px, 1000px);

.sidebar {
width: 35%;

}




More on responsive design + Sass later, including a
built-in £1uidize replacement

Function arguments = same rules as mixin arguments



Using @if, we can conditionally output code:

application.scss application.css

Stheme: dark; header {
background: #000;

header { }
@if Stheme == dark {
background: #000;

}
}




Comparisons

© == equalto

® 1= not equal to

®© > greater than *

© >= greater than or equal to *
© < lessthan*

® <= less than or equal to *

* numbers only



application.scss

Stheme: light;

header {
@if Stheme == dark {
background: #000;

}




@else provides a fallback if everything evaluates false or null:

application.scss application.css

Stheme: light; header {
background: #fff;
header { }
@if Stheme == dark {
background: #000;
} @Qelse {

background: #fff;
}

}




@else if allows for multiple comparisons:

application.scss application.css

Stheme: pink; header {

header { }
@if Stheme == dark {
background: #000;
} @else if Stheme == pink {

background: pink;
} @else {
background: #fff;

}
}

background:

pink;






Interating Over a List

The @each directive allows us to loop through each
list item:

Sauthors: nick aimee dan drew;




application.scss application.css

Sauthors: nick aimee dan drew; .author-nick {
background: url(author-nick. jpg);
@each Sauthor in S$Sauthors ({ }
.author-#{Sauthor} { .author-aimee {
background: url(author- background: url(author-aimee. jpg);
#{Sauthor}.jpqg); }
} .author-dan {
} background: url(author-dan. jpg);
}
: .author-drew {
. nick background: url(author-drew. jpg);
. aimee ;

dan

-h.U&)NA

drew



application.scss application.css

.l1tem { .1tem {
position: absolute; position: absolute;
right: 0; r IghtT R
@for $Si from 1 through 3 { }

&.item-#{Si} { .ltem.item-1 {
top: $1 * 30px; top: 30px;

}

.l1tem.i1tem-2 {
top: 60px;

}

.i1tem.item-3 {

1. 1 top: 90px;

Si 2: 2 }




® @for and @while = @each with more control

® @while requires manually updating the index



application.scss application.css

.1tem {
position: absolute;
.ltem { r IghtT R
position: absolute; }
right: O0; .ltem.item-1 {
@while $i < 4 { topk 30px;
&.item-#{Si} { }
top: $1 * 30px; .l1tem.i1tem-2 {

top: 60px;
S1 + 1; }
.i1tem.item-3 {

$i ’ 2 , top: 90px;




application.scss application.css

.1tem {
position: absolute;
.ltem { r IghtT R
position: absolute; }
right: O0; .ltem.item-2 {
@while $i <= 6 { topk 60px;
&.item-#{Si} { }
top: $1 * 30px; .1tem.i1tem-4 {

top: 120px;
S1 + 2; }
.ltem.item-6 {

. top: 180px;
Si—Pp \







Mixins Extend Functions

® Similar sets of ® Sets of properties ® Commonly-used

properties used that match exactly operations to
multiple times with

determine values
small variations



_buttons.scss application.css

@mixin button(Scolor, Srounded: .btn-a {

color: Scolor; color: black;

@if Srounded == true { }

border-radius: 4px; .btn-b {

} color: #333333;
} border-radius: 4px;
.btn-a { }

@include button(#000, false);
}
.btn-b {

@include button(#333);

}




_buttons.scss application.css

@mixin button($color, Srounded: false) { .btn-a {
color: Scolor; color: black;
@if Srounded { }
border-radius: S$Srounded; .btn-b {
} ) color: #333333;
} & used i§ $rounded border-radius: 4px;

.btn-a { isw't $alse ov wvull )
@include button (#000);

}
.btn-b {

@include button(#333, 4px);
}




U MATH + COLOR




6.1 Basic Arithmetic
Differing Units
Math Functions
Math + Color
Color Shortcuts

Color Functions



Number Operations
+ addition
— subtraction
* multiplication
/ division

modulo

o©

Modulo = remainder from a division operation. 12 % 3
results in 0, while 12 ¢ 5 returns 2.



Assembly Tip

Sass defaults to returning
(up to) five digits after a
decimal point.



Division

The trickiest of the number operations, due to font:

font: normal 2em/1.5 Helvetica, sans-serif;




Triggering Division

® Variable involved - $size / 10
® Parenthesis- (100px / 20)

® Another arithmetic operation- 20px * 5 / 2



String Addition

Addition on strings concatenates them:

Sfamily: "Helvetica + "Neue":; // "Helvetica Neue"

Initial left-side string determines post-concatenation quotes:

Sfamily: 'sans-' + serif // 'sans-serif'

Sfamily: sans- + 'serif' // sans-serif




If the units differ, Sass attempts combination:

application.scss application.css

h2 { h2 {
font-size: 10px + 4pt; font-size: 15.33333px;
} }




Incompatible units will throw an error:

application.scss application.css

Incompatible units:
10px + 4em; and 'px'.




Pre-Defined Math Utilities

® round($Snumber) - round to closest whole number
® ceil($number) - round up

® floor ($number) - round down

® abs(S$Snumber) - absolute value

® min($list) - minimum list value

® max($Slist) - maximum list value

® percentage($Snumber) - convertto percentage



Called the same way as custom functions:

application.scss application.css

h2 { h2 {
line-height: ceil(1.2); line-height: 2;
} }




percentage () replaces our custom fluidize():

application.scss application.css

.Slidebar { .Slidebar {
width: percentage(350px/1000px); width: 35%;
} }




percentage () replaces our custom fluidize():

application.scss application.css

Scontext: 1000px; .sidebar {
width: 45%;

.slidebar { }
width: percentage(450px/$context);

}







Color Juggling

Easier recall through variables
Simplified alteration via color utility functions

Faster representation using shorthand



application.scss application.css

Scolor-base: #333333; .addition {

background: #445566;
.addition { }

background: $color-base #112233; .subtraction {

} background: #221100;
.subtraction { }

background: S$color-base #112233; .multiplication {

} background: #666666;
.multiplication { }

background: S$Scolor-base ; .division {

} background: #191919;
.division { }

background: S$color-base

}




Assembly Tip

Where possible, use color
utility functions instead of
color arithmetic: easier to
predict and maintain.



application.scss application.css

Scolor: #333333; .alpha {
background: rgba(51,51,51,0.8);
.alpha { }
background: rgba(51,51,51,0.8);
}
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application.scss application.css

scolor: #333333; .alpha {

background: rgba(51,51,51,0.8);
.alpha { }

background: rgba($color,0.8); .beta {

} background: rgba(0,0,0,0.8);
.beta { }

background: rgba(#000,0.8);

} ‘Tl
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Color utility functions:
workflow-altering convenience



application.scss application.css

Scolor: #333; .lighten {
background: #666666;

.lighten { }
color: lighten(Scolor, 20%); .darken {

} background: black;
.darken { }

color: darken($Scolor, 20%);

}




application.scss application.css

Scolor: #87bf64; .saturate {
background: #82d54e;

.saturate { }
color: saturate($Scolor, 20%); .desaturate {

} background: #323130;
.desaturate { }

color: desaturate($Scolor, 20%);

}




application.scss application.css + .

.mix-a { .mix-a {

color: mix(#£f£££00, #107£fc9); background: #87bf64;
} }
.mix-b { .mix-b {

color: mix(#£f£f££00, #107£fc9, 30%); background: #57a58c;
} }




application.scss application.css

Scolor: #87bf64; .grayscale {

color: #929292;
.grayscale { }

color: grayscale(S$Scolor); .ilnvert {

} color: #78409b;
.invert { }

color: invert(S$Scolor); .complement {

} color: #9c64bf;
.complement { }

color: complement($Scolor);

}




Assembly Tip
But wait, there's more!

http.//sass-lang.com/docs/yardoc/Sass/Script/Functions.htmi


http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
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7.1 The Movement

les




Responsive design rapidly
progressed beyond good idea
and into common practice



Media Queries

Easier fluid calculation and media query handling

Journey Into Mobile



Media Queries

Basic construction:

application.css

7.1 The Movement



application.css
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1.2 Nested Media Queries



application.scss application.css

.sidebar { .sidebar {
border: 1lpx solid #ccc; border: 1lpx solid #ccc;
@media (min-width: 700px) { }
float: right; @media (min-width: 700px) {
width: 30%; .Sslidebar {
Eloat : raqlit;
width: 30%;







® @content - pass a block of
properties to a mixin



application.scss application.css

.sidebar { .sidebar {
border: 1lpx solid #ccc; border: 1lpx solid #ccc;
@media (min-width: 700px) { }
float: right; @media (min-width: 700px) {
width: 30%; .sidebar {
float: right;
width: 30%;




application.scss application.css

@mixin respond-to { .sidebar {
@media (min-width: 700px) { border: lpx solid #ccc;
@content }
\ always outputs the @medJ:.a (min-width: 700px) {
.sidebar {
.sidebar { Same wediad quevy float: right;
border: 1lpx solid #ccc; width: 30%;
@include respond-to { }
float: right; }
width: 30%;

}




application.scss application.css

@mixin respond-to { .sidebar {
@media (min—width:|700px) { border: lpx solid #ccc;

3 @content
}

}
2 @media (min-width: 700px) {
} .sidebar {
.sidebar { float: right;
border: 1lpx solid #ccc; width: 30%;
@include respond-to { }
float: right; }
width: 30%;




application.scss application.css

@mixin respond-to($media) { .sidebar {
@if Smedia == tablet { border: lpx solid #ccc;
@media (min-width: 700px) { }
@content @media (min-width: 700px) {
} .sidebar {
} float: right;
} width: 30%;
.sidebar { }
border: 1lpx solid #ccc; }
@include respond-to(tablet) {
float: right;
width: 30%;




application.scss application.css

@mixin respond-to($query) { .sidebar {
@media (min-width: Squery) { border: 1lpx solid #ccc;
@content }
} @media (min-width: 900px) {
} .sidebar {
.sidebar { float: right;
border: 1lpx solid #ccc; width: 30%;
@include respond-to(900px) { }
float: right; }
width: 30%;




application.scss application.css

@mixin respond-to($val, S$Squery) { .sidebar {

@media (Sval: Squery) { border: 1lpx solid #ccc;
@content }

} @media (max-width: 600px) {
} .sidebar {

.sidebar { float: right;
border: 1lpx solid #ccc; width: 30%;

@include respond-to(max-width, }
600px) }
float: right;
width: 30%;







Declarations outside @media cannot be extended inside:

application.scss

.sidebar {
border: 1lpx solid #ccc;

}
.callout {

@media (min-width: 700px) {
@extend .sidebar;
width: 35%:

}

deprecation warning fov now,
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}




application.scss application.css

@media (min-width: 700px) { @media (min-width: 700px) {
.content { .content,
border: 1lpx solid #ccc; .aside {
} border: lpx solid #ccc;
.aside { }
@extend .content; .aside {

width: 2 width: 35%;
} }
}

extemd’ma Something
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wedid query 1S Ok




Matching media queries are not combined:

application.scss application.css

.sidebar { P emedia (min-width: 700px) {
@media (min-width: .sidebar {
width: 50%; width: 50%;
} }

} }
.callout { }@media (min-width: 700px) {

@media (min-width: .callout {
width: 35%; width: 35%;
} }
} }




Sometimes, manual combination is best:

application.css
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1.4 Responsive Pitfalls
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