— —— - - -

, ,LLI";BLI\IG SASS

_' FOUNDATION

1.1 Sass, Not SASS
SCSS: Sassy CSS
Commenting
Importing
Nesting Selectors
The Parent Selector

Nesting Pitfalls

CSS is crafted to be simple,
but scaling simplicity is difficult.

At Scale

Slight variations of colors, fonts, numbers,
& other properties arise

Effective curbing of repetition can decline

Stylesheet size may become unmanageable

Enter Sass

© Syntactically Awesome Stylesheets

® Looks like CSS, but adds features to
combat shortcomings

® Preprocessor, like CoffeeScript & Haml:

> wal

Sass File Sass Compiler CSS File

Created by Hampton Catlin

Primary developers:
Nathan Weizenbaum & Chris Eppstein

Baked into Rails

Assembly Tip

SASS. Sass

1.2 SCSS: Sassy CSS
Commenting
Importing
Nesting Selectors
The Parent Selector

Nesting Pitfalls

Sassy CSS (. scss) is the default file extension
CSS is valid SCSS

A second syntax (. sass) exists, but we'll focus on SCSS
for the course

application.scss application.css

Smain: #444; .btn {
color: #444444;

.btn { display: block;

color: Smain; }

display: block; .btn-a {
} color: #919191;
.btn-a { }

color: lighten($main, 30%); .btn-a:hover {

& :hover ({ color: #aaaaaa;

color: lighten(Smain, 40%); }

}

Assembly Tip

Since CSS doubles as valid
SCSS, try writing styles
normally & slowly incorporate
new techniques.

Sass adds // for single line comments - not
output after compile

application.scss application.css

These comments will /* This comment will */
not be output to the
compiled CSS file

This comment will */

application.css

——

1.4 Importing

® The CSS @import rule has been avoided:
prevents parallel downloading

® @import With .scss or .sass happens
during compile rather than client-side

® File extension is optional

application.scss

// Imports styles found in 'buttons.scss'
// when the compiler processes application.scss

@import "buttons”;

w

-

application.scss application.css

= l buttowns.css 1S cveadted
even 1§ we ve WWP0Vting

buttons.css

w

buttons.scss

Partials

Adding an underscore creates a partial. Partials can be
imported, but will not compile to .css

— —
—— c=—="
—

appllcatlon SCSS application.css

Fl

application.scss

// Will import buttons.sass, buttons.sass,
// buttons.scss, or buttons.scss

@import "buttons';

w

-

application.scss application.css

w

_buttons.scss

R

application.css

g

1.5 Nesting Selectors

!%I

&

application.scss application.css

.content { .content {
border: lpx solid #ccc; border: 1lpx solid #ccc;
padding: 20px; padding: 20px;

} }

.content h2 { .content h2 {
font-size: 3em; font-size: 3em;
margin: 20px 0; margin: 20px 0;

} }

.content p { .content p {
font-size: 1.5em; font-size: 1.5em;
margin: 15px O0; margin: 15px 0;

} }

application.scss

.content {
border: lpx solid #ccc;
padding: 20px;
h2 {
font-size: 3em;
margin: 20px 0;

}

p {
font-size: 1.5em;

margin: 15px 0;

}

application.css

.content {
border: 1lpx solid #ccc;
padding: 20px;

}

.content h2 {
font-size: 3em;
margin: 20px 0;

}

.content p {
font-size: 1.5em;
margin: 15px 0;

Nesting Properties

Certain properties with matching namespaces are nestable:

application.scss application.css

.btn { .btn {
text: { text-decoration: underline;
decoration: underline; text-transform: lowercase;
transform: lowercase; }

}

}

While nesting, the & symbol references the parent selector:

application.scss application.css

.content { .content {
border: 1lpx solid #ccc; border: 1lpx solid #ccc;
padding: 20px; padding: 20px;
.callout { }
border-color: red; .content .callout {
} border-color: red;
&.callout { }
border-color: green; .content.callout {
K border-color: green;

} }

veSferences:

.content

application.scss application.css

a { a {
color: #999; color: #999;
&:hover { }
color: #777; a:hover {

} color: #777;
&:active { }

color: #888; azactive {
} color: #888;

Parent Selector Nesting

Selectors can also be added before the & reference:

application.css

Ly

1.6 The Parent Selector

application.scss application.css

.sidebar { .sidebar {
float: right; float: right;
width: 300px; width: 300px;
.users & { }

width: @ 00px; .users .sidebar {
} width: 400px;

} veSerences: }

.Sidebayr

application.scss application.css

.sidebar { .sidebar {
float: right; float: right;
width: 300px; width: 300px;
h2 { }

color: #777; .sidebar h2 {
.users & { colome #7177;

color:#ddd; }
} .users .sidebar h2 {

} vefevences: color: #444;
.Sidebavr hz }

Nesting is easy, but dangerous

Do not nest unnecessarily

application.scss application.css

.content { .content {

background: #ccc; background: #ccc;
.cell { }

h2 { .content .cell h2 a:hover {

a { color: red;
& :hover } K

color: red;

damsevous\eve\o¥
S?ec’v?ic’\-l;\j

Assembly Tip

Try limiting your nesting to 3
or 4 levels and consider
refactoring anything deeper.

2.1 Variable Declaration ’bUse

Native CSS variable support is still in its infancy,
but Sass affords us a way to set reusable values

Variable names begin with §, like Sbase

application.scss application.css

Sbase: #777777; .Ssidebar
border:

.sidebar { }
border: 1lpx solid Sbase; . sidebar
color:

P {
color: S$base; }

}

{
lpx solid #777777;

p {
#777777;

The Default Flag

Variable definitions can optionally take the !default flag:

application.scss application.css

stitle: 'My Blog'; h2:before {
stitle: 'About Me'; content: 'About Me';

}
h2:before {

content: Stitle
}

ovevvides the
£ivst value

application.scss application.css

stitle: 'My Blog'; h2:before {
Stitle: 'About Me' !default; content: 'My Blog';

h2:before {
content: Stitle;

}

Since 3 value exists,
i+t 1SV + overwritten

application.scss _buttons.scss

i a value isn't

Srounded: 5px; Srounded: 3px !default; defined elsewhere
used by default

@import "buttons”; .btn-a {
border-radius: S$rounded;
color: #777;
}
.btn-b {
border-radius: S$Srounded;
color: #222;

}

application.scss

Srounded: 5px;

@import "buttons”;

application.css

.btn-a {

border-radius:

color: #777;

}
.btn-b {

border-radius:

color: #222;
}

5px;

5px;

Booleans

Srounded: false;

Sshadow: true;

Numbers - can be set with or without units:

Srounded: 4px;
Sline-height: 1.5;

Sfont-size: 3rem;

Colors

Sbase: purple;
Sborder: rgba(0,

Sshadow: #333;

Strings - can be set with or without quotes:

Sheader: 'Helvetica Neue';
Scallout: Arial;

smessage: "Loading...";

Lists

Sauthors: nick, dan, aimee, drew;

smargin: 40px 0 20px 100px;

Null

Sshadow: null;

application.scss application.css

p { Syntax error: Undefined

Sborder: #ccc; variable: "Sborder"
lpx solid S$border;

lpx solid Sborder;

$bovder isw + available
outside of ¢

Reassignment in a Declaration

Variables set inside a declaration (within { })aren't
usable outside that block

Setting new values to variables set outside a
declaration changes future instances

application.scss application.css

Scolor-base: #777777; .sidebar {
background: #222222;
.sidebar { }

Scolor-base: #222222; p {

background: S$color-base; color: #222222;

} }
p {

color: Scolor-base;

}

overwviting 3 varidble in 2
declavation 18 3\oba\

Jse the Ruby-esque #{S$variable} to shim variables
into selectors, property names, and strings:

application.scss application.css
Sside: top; sup {
position: relative;

sup { top: -0.5em;

position: relative; }

#{Sside}: -0.5em; .callout-top {
} background: #777;
.callout-#{Sside} { }

background: #777;

}

Assembly Tip

Be considerate of variable
naming. Scolor-base
gets a lot more mileage
than Scolor-blue.

3.1 Mixin Setup + Use
Adding Arguments
Multiple Arguments
Variable Arguments

Interpolation + Mixins

application.css

=Sy ¥ 13

3.1 Mixin Setup + Use

Mixins
Blocks of reusable code that take optional arguments:

_buttons.scss

@mixin button {
border: 1lpx solid #ccc;
font-size: lem;
text-transform: uppercase;

_buttons.scss application.css

@mixin button { .btn-a {
border: lpx solid #ccc; border: lpx solid #ccc;
font-size: lem; font-size: lem;
text-transform: uppercase; text-transform: uppercase;

} background: #777;

.btn-a { }
@include button; .btn-b {
background: #777; border: 1lpx solid #ccc;

} font-size: lem;

.btn-b { text-transform: uppercase;
@include button; background: #£f£fO0;
background: #£f£fO0; }

}

Assembly Tip

Make sure the @mixin block
comes before the @include,
especially when importing
files containing mixins.

Assembly Tip
@include = use a mixin

@import = import a file

_buttons.scss application.css

@mixin button { .btn-a {
border: 1lpx solid #ccc; border: 1lpx solid #cc¥€s
font-size: lem; font-size: lem;]
text-transform: uppercase; text-transform: uppercase;

} background: #777;

.btn-a { }

@include button; .btn-b { W each declaration
background: #777; border: 1lpx solid #ccc;]

repedting proyevties

} font-size: lem;

.btn-b { text-transform: uppercase;
@include button; background: #£ffO0;
background: #£f£O0; }

}

We're Just Repeating Properties

It's more efficient to use CSS here (for now):

application.css

Ly

3.1 Mixin Setup + Use

If that's the case, what are
mixins good for then?

R

application.css

g

3.2 Adding Arguments

WY'\"I;TV\S thvee
woStly-identical
Propevties gets old

-

application.scss application.css

@mixin box-sizing { .content {
-webkit-box-sizing: border-box; -webkit-box-sizing: border-bok;
-moz-box-sizing: border-box; -moz-box-sizing: border-box;
box-sizing: border-box; box-sizing: border-box;

} border: lpx solid #ccc;

.content { padding: 20px;

@include box-sizing; }

border: 1lpx solid #ccc;

padding: 20px;
} uwchahg’ma Pvorvevties

Still just copying

Arguments

Values passed into a mixin, potentially altering output:

application.scss

@mixin box-sizing($x) {
-webkit-box-sizing: $x;
-moz-box-sizing: $X;
box-sizing: $Xx;

}

application.scss application.css

@mixin box-sizing($x) { .content {
-webkit-box-sizing: $Xx; -webkit-box-sizing: border-box;
-moz-box-sizing: S$X; -moz-box-sizing: border-box;
box-sizing: $Xx; box-sizing: border-box;
} border: lpx solid #ccc;
.content { padding: 20px;
@include box-sizing(border-box); }
border: lpx solid #ccc; .callout {

padding: 20px; -webkit-box-sizing: content-box;

} -moz-box-sizing: content-box;

.ca}lout { . box-sizing: content-box;
@include box-sizing(content-box); }

}

Default Values

Optionally, what arguments will default to if not included:

application.scss

@mixin box-sizing(S$x: border-box) ({
-webkit-box-sizing: $x;
-moz-box-sizing: S$X;
box-sizing: $x;

}

application.scss application.css

@mixin box-sizing($x: border-box) { .content {
-webkit-box-sizing: $x; -webkit-box-sizing: border-box;
-moz-box-sizing: S$X; -moz-box-sizing: border-box;
box-sizing: $x; box-sizing: border-box;
} border: lpx solid #ccc;
.content { arguwent is passed padding: 20px;
@include box-sizing; }
border: lpx solid #ccc; .callout {
padding: 20px;

border-box 1§ wo

-webkit-box-sizing: content-box;
} -moz-box-sizing: content-box;

.ca}lout { . box-sizing: content-box;
@include box-sizing(content-box); }

}

_buttons.scss application.css

@mixin button(Sradius, $color) { .btn-a {
border-radius: S$radius; border-radius: 4px;
color: Scolor:; color: #000;

} }

.btn-a {

@include button(4px, #000);

} X

arguwments 3ve
commwa-Sepavated and
Passed i ovdev

_buttons.scss application.css

@mixin button(Sradius, $color) { Syntax error: Mixin button is

Sradius; missing argument $color.
Scolor;

}
.btn-a {

@include button(4px);
}

+too Sew avquwments

_buttons.scss application.css

@mixin button($radius, S$color: #000) { .btn-a {
border-radius: S$radius; border-radius: 4px;
color: Scolor:; color: #000;

%btn—a { optiondl second avrqument ;

@include button(4px);

}

_buttons.scss application.css

@mixin button($color: #000, Sradius) {

Syntax error: Required argument
Sradius;

Scolor must come before any

Scolor; optional arguments.

?btn—a ‘ optiondls come 13ast

@include button(4px);
}

_buttons.scss application.css

@mixin button($radius, S$color: #000) { .btn-a {
border-radius: Sradius; border-radius: 5px;
color: Scolor; color: #777777;

} }

.btn-a {

@include button(S$Scolor: #777777,

Sradius: 5px); R

R

ke\jwovd avquments 3llow
PassSing w any ovdevr

application.css

——

3.4 Variable Arguments

Passing valid, comma-separated CSS as a single value:

_buttons.scss application.css

@mixin transition($val) { Mixin transition takes 1

sval; argument but 2 were passed.
sval;
sval;
}
.btn-a {
@include transition(color 0.3s
ease-1n, background 0.5s ease-out);

}

Adding ... to an argument creates a variable argument (vararg):

_buttons.scss application.css

@mixin transition($val...) { .btn-a {
-webkit-transition: Sval; -webkit-transition: color 0.3s
-moz-transition: Sval; ease-in, background 0.5s ease-out;
transition: Sval; -moz-transition: color 0.3s

} ease-1in, background 0.5s ease-out;

.btn-a { transition: color 0.3s ease-1in,
@include transition(color 0.3s background 0.5s ease-out;

ease-1n, background 0.5s ease-out); }

}

Variable arguments in reverse:

_buttons.scss

@mixin button(Sradius, Scolor) {
border-radius: $radius;
color: Scolor;

}

Sproperties: 4px, #000;

.btn-a { \A

@include button(Sproperties...);

}

Passes 3 1ist which 1S split
Wito arguments b\j the wmixin

application.css

.btn-a {
border-radius:
color: #000;

4px;

_buttons.scss application.css

@mixin highlight-t(Scolor) { .btn-a {

border-top-color: Scolor; border-right-color: #ff0;
I }
@mixin highlight-r(Scolor) {

border-right-color: $color;

}
@mixin highlight-b($color) {

border-bottom-color: Scolor;

}
@mixin highlight-1(Scolor) {
border-left-color: Scolor;

}
.btn-a {

@include highlight-r (#£00);
}

_buttons.scss application.css

@mixin highlight(Scolor, S$side) { .btn-a {
border-#{$side}-color: S$color; border-right-color: #f£f0;
} }
.btn-a {
@include highlight (#£00, right);

}

S~ EXTEND

4.1 Extend Setup + Use

Nesting + Extend
Extend Pitfalls

Placeholder Selectors

application.css application.css

—

4.1 Extend Setup + Use

Extend

Sass will track and automatically combine selectors for us:

_buttons.scss application.css

.btn-a { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem; border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;

} text-transform: uppercase;
.btn-b { }

@extend .btn-a; .btn-b {
background: #£ffO0; background: #£ffO0;

} }

.btn-a,

.btn-b
.btn-b { i {
@extend .btn-a; }
background: #f£f£0; .btn-b {

; . adds 3 secownd declaratiown
} for unique values

application.scss application.css

.content { .content,
border: lpx solid #ccc; .callout {
padding: 20px; border: lpx solid #ccc;
h2 { padding: 20px;
font-size: 3em; }
margin: 20px 0; .content h2,
} .callout h2 {
} font-size: 3em;
.callout { margin: 20px 0;
@extend .content; }
background: #ddd; .callout {
} background: #ddd;

.content,
.callout {

}
.callout { ‘ .content h2,
@extend .content;

.callout h2 {

background: #ddd;
})
.callout {

_buttons.scss application.css

.btn-a { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem; border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;
} text-transform: uppercase;
.btn-b { }
@extend .btn-a; .btn-b {
background: #£f£0; background: #£f£0;
} }
.sSlidebar .btn-a { .sidebar .btn-a, btwn-b s also
text-transform: lowercase; .sidebar .btn-b { <—-_'
scoped heve

text-transform: lowercase;

}

Since .btn-b extends .btn-a, every instance that
modifies .btn-a also modifies .btn-b

Stylesheet bloat, if these extra styles aren't needed

We can counteract with placeholder selectors

Assembly Tip

Always, always check the CSS
output of your Sass before
using it on a live site.

Placeholder selectors are denoted with a &

Can be extended, but never become a selector of
their own

_buttons.scss application.css

.btn-a { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem: border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;

} text-transform: uppercase;
.btn-b { }
@extend .btn-a; .btn-b {
background: #£f£fO0; background: #£f£fO0;
} }
.sldebar .btn-a { .sidebar .btn-a,
text-transform: lowercase; .slidebar .btn-b {

text-transform: lowercase;

_buttons.scss application.css

Tbtn { .btn-a,
background: #777; .btn-b {
border: 1lpx solid #ccc; background: #777;
font-size: lem: border: 1lpx solid #ccc;
text-transform: uppercase; font-size: lem;
} text-transform: uppercase;
.btn-a { }
@extend %btn; .btn-b {
} background: #£f£fO0;
.btn-b { }
@extend %btn; .sidebar .btn-a {
background: #£f£0; text-transform: lowercase;
} }
.slidebar .btn-a { bEn-b 1S no

text-transform: lowercase; orney sco?ed
9

Extend common blocks to avoid extra HTML classes:

application.scss application.css

$ir { .logo,
border: 0; .social {
font: 0/0 a; border: 0;
text-shadow: none; font: 0/0 a;
color: transparent; text-shadow: none;

background-color: transparent; color: transparent;
} background-color: transparent;

.logo { }
@extend %ir;

}

.social {
@extend %ir;

}

Assembly Tip

Versions of IE prior to 9 have
a limit of 4095 selectors-per-

CSS file limit.

2 DIRECTIVE

5.1 Functions

Responsive Refresher

Straight from Journey Into Mobile:

target / context

If the target size of our sidebar is 350px and the
context of its parent is 1000px:

350px / 1000px = 0.35

0.35 * 100 = 35%

application.scss application.css

@function fluidize() {
@return 35%;

.sidebar {
width: 35%;

} dlways vetuvns 35/, }
.slidebar {

width: fluidize();
}

application.scss application.css

@function fluidize($target, S$context) {

@return (Starget / Scontext) * 100%;
} }
.slidebar {

width: fluidize(350px, 1000px);

.sidebar {
width: 35%;

}

More on responsive design + Sass later, including a
built-in £1uidize replacement

Function arguments = same rules as mixin arguments

Using @if, we can conditionally output code:

application.scss application.css

Stheme: dark; header {
background: #000;

header { }
@if Stheme == dark {
background: #000;

}
}

Comparisons

© == equalto

® 1= not equal to

®© > greater than *

© >= greater than or equal to *
© < lessthan*

® <= less than or equal to *

* numbers only

application.scss

Stheme: light;

header {
@if Stheme == dark {
background: #000;

}

@else provides a fallback if everything evaluates false or null:

application.scss application.css

Stheme: light; header {
background: #fff;
header { }
@if Stheme == dark {
background: #000;
} @Qelse {

background: #fff;
}

}

@else if allows for multiple comparisons:

application.scss application.css

Stheme: pink; header {

header { }
@if Stheme == dark {
background: #000;
} @else if Stheme == pink {

background: pink;
} @else {
background: #fff;

}
}

background:

pink;

Interating Over a List

The @each directive allows us to loop through each
list item:

Sauthors: nick aimee dan drew;

application.scss application.css

Sauthors: nick aimee dan drew; .author-nick {
background: url(author-nick. jpg);
@each Sauthor in S$Sauthors ({ }
.author-#{Sauthor} { .author-aimee {
background: url(author- background: url(author-aimee. jpg);
#{Sauthor}.jpqg); }
} .author-dan {
} background: url(author-dan. jpg);
}
: .author-drew {
. nick background: url(author-drew. jpg);
. aimee ;

dan

-h.U&)NA

drew

application.scss application.css

.l1tem { .1tem {
position: absolute; position: absolute;
right: 0; r IghtT R
@for $Si from 1 through 3 { }

&.item-#{Si} { .ltem.item-1 {
top: $1 * 30px; top: 30px;

}

.l1tem.i1tem-2 {
top: 60px;

}

.i1tem.item-3 {

1. 1 top: 90px;

Si 2: 2 }

® @for and @while = @each with more control

® @while requires manually updating the index

application.scss application.css

.1tem {
position: absolute;
.ltem { r IghtT R
position: absolute; }
right: O0; .ltem.item-1 {
@while $i < 4 { topk 30px;
&.item-#{Si} { }
top: $1 * 30px; .l1tem.i1tem-2 {

top: 60px;
S1 + 1; }
.i1tem.item-3 {

$i ’ 2 , top: 90px;

application.scss application.css

.1tem {
position: absolute;
.ltem { r IghtT R
position: absolute; }
right: O0; .ltem.item-2 {
@while $i <= 6 { topk 60px;
&.item-#{Si} { }
top: $1 * 30px; .1tem.i1tem-4 {

top: 120px;
S1 + 2; }
.ltem.item-6 {

. top: 180px;
Si—Pp \

Mixins Extend Functions

® Similar sets of ® Sets of properties ® Commonly-used

properties used that match exactly operations to
multiple times with

determine values
small variations

_buttons.scss application.css

@mixin button(Scolor, Srounded: .btn-a {

color: Scolor; color: black;

@if Srounded == true { }

border-radius: 4px; .btn-b {

} color: #333333;
} border-radius: 4px;
.btn-a { }

@include button(#000, false);
}
.btn-b {

@include button(#333);

}

_buttons.scss application.css

@mixin button($color, Srounded: false) { .btn-a {
color: Scolor; color: black;
@if Srounded { }
border-radius: S$Srounded; .btn-b {
}) color: #333333;
} & used i§ $rounded border-radius: 4px;

.btn-a { isw't $alse ov wvull)
@include button (#000);

}
.btn-b {

@include button(#333, 4px);
}

U MATH + COLOR

6.1 Basic Arithmetic
Differing Units
Math Functions
Math + Color
Color Shortcuts

Color Functions

Number Operations
+ addition
— subtraction
* multiplication
/ division

modulo

o©

Modulo = remainder from a division operation. 12 % 3
results in 0, while 12 ¢ 5 returns 2.

Assembly Tip

Sass defaults to returning
(up to) five digits after a
decimal point.

Division

The trickiest of the number operations, due to font:

font: normal 2em/1.5 Helvetica, sans-serif;

Triggering Division

® Variable involved - $size / 10
® Parenthesis- (100px / 20)

® Another arithmetic operation- 20px * 5 / 2

String Addition

Addition on strings concatenates them:

Sfamily: "Helvetica + "Neue":; // "Helvetica Neue"

Initial left-side string determines post-concatenation quotes:

Sfamily: 'sans-' + serif // 'sans-serif'

Sfamily: sans- + 'serif' // sans-serif

If the units differ, Sass attempts combination:

application.scss application.css

h2 { h2 {
font-size: 10px + 4pt; font-size: 15.33333px;
} }

Incompatible units will throw an error:

application.scss application.css

Incompatible units:
10px + 4em; and 'px'.

Pre-Defined Math Utilities

® round($Snumber) - round to closest whole number
® ceil($number) - round up

® floor ($number) - round down

® abs(S$Snumber) - absolute value

® min($list) - minimum list value

® max($Slist) - maximum list value

® percentage($Snumber) - convertto percentage

Called the same way as custom functions:

application.scss application.css

h2 { h2 {
line-height: ceil(1.2); line-height: 2;
} }

percentage () replaces our custom fluidize():

application.scss application.css

.Slidebar { .Slidebar {
width: percentage(350px/1000px); width: 35%;
} }

percentage () replaces our custom fluidize():

application.scss application.css

Scontext: 1000px; .sidebar {
width: 45%;

.slidebar { }
width: percentage(450px/$context);

}

Color Juggling

Easier recall through variables
Simplified alteration via color utility functions

Faster representation using shorthand

application.scss application.css

Scolor-base: #333333; .addition {

background: #445566;
.addition { }

background: $color-base #112233; .subtraction {

} background: #221100;
.subtraction { }

background: S$color-base #112233; .multiplication {

} background: #666666;
.multiplication { }

background: S$Scolor-base ; .division {

} background: #191919;
.division { }

background: S$color-base

}

Assembly Tip

Where possible, use color
utility functions instead of
color arithmetic: easier to
predict and maintain.

application.scss application.css

Scolor: #333333; .alpha {
background: rgba(51,51,51,0.8);
.alpha { }
background: rgba(51,51,51,0.8);
}

wanually ‘}vad’mg the ng
value o§ a2 colov we
a\read\, have stoved

application.scss application.css

scolor: #333333; .alpha {

background: rgba(51,51,51,0.8);
.alpha { }

background: rgba($color,0.8); .beta {

} background: rgba(0,0,0,0.8);
.beta { }

background: rgba(#000,0.8);

} ‘Tl
cawn 31so use hex
values wheve appropviate

unctions

[ath + Color =

or Shortcuts ‘

Color utility functions:
workflow-altering convenience

application.scss application.css

Scolor: #333; .lighten {
background: #666666;

.lighten { }
color: lighten(Scolor, 20%); .darken {

} background: black;
.darken { }

color: darken($Scolor, 20%);

}

application.scss application.css

Scolor: #87bf64; .saturate {
background: #82d54e;

.saturate { }
color: saturate($Scolor, 20%); .desaturate {

} background: #323130;
.desaturate { }

color: desaturate($Scolor, 20%);

}

application.scss application.css + .

.mix-a { .mix-a {

color: mix(#£f£££00, #107£fc9); background: #87bf64;
} }
.mix-b { .mix-b {

color: mix(#£f£f££00, #107£fc9, 30%); background: #57a58c;
} }

application.scss application.css

Scolor: #87bf64; .grayscale {

color: #929292;
.grayscale { }

color: grayscale(S$Scolor); .ilnvert {

} color: #78409b;
.invert { }

color: invert(S$Scolor); .complement {

} color: #9c64bf;
.complement { }

color: complement($Scolor);

}

Assembly Tip
But wait, there's more!

http.//sass-lang.com/docs/yardoc/Sass/Script/Functions.htmi

http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html
http://sass-lang.com/docs/yardoc/Sass/Script/Functions.html

! RESPONSIVE

7.1 The Movement

les

Responsive design rapidly
progressed beyond good idea
and into common practice

Media Queries

Easier fluid calculation and media query handling

Journey Into Mobile

Media Queries

Basic construction:

application.css

7.1 The Movement

application.css

'\ .
il R —————
V 4 AN

1.2 Nested Media Queries

application.scss application.css

.sidebar { .sidebar {
border: 1lpx solid #ccc; border: 1lpx solid #ccc;
@media (min-width: 700px) { }
float: right; @media (min-width: 700px) {
width: 30%; .Sslidebar {
Eloat : raqlit;
width: 30%;

® @content - pass a block of
properties to a mixin

application.scss application.css

.sidebar { .sidebar {
border: 1lpx solid #ccc; border: 1lpx solid #ccc;
@media (min-width: 700px) { }
float: right; @media (min-width: 700px) {
width: 30%; .sidebar {
float: right;
width: 30%;

application.scss application.css

@mixin respond-to { .sidebar {
@media (min-width: 700px) { border: lpx solid #ccc;
@content }
\ always outputs the @medJ:.a (min-width: 700px) {
.sidebar {
.sidebar { Same wediad quevy float: right;
border: 1lpx solid #ccc; width: 30%;
@include respond-to { }
float: right; }
width: 30%;

}

application.scss application.css

@mixin respond-to { .sidebar {
@media (min—width:|700px) { border: lpx solid #ccc;

3 @content
}

}
2 @media (min-width: 700px) {
} .sidebar {
.sidebar { float: right;
border: 1lpx solid #ccc; width: 30%;
@include respond-to { }
float: right; }
width: 30%;

application.scss application.css

@mixin respond-to($media) { .sidebar {
@if Smedia == tablet { border: lpx solid #ccc;
@media (min-width: 700px) { }
@content @media (min-width: 700px) {
} .sidebar {
} float: right;
} width: 30%;
.sidebar { }
border: 1lpx solid #ccc; }
@include respond-to(tablet) {
float: right;
width: 30%;

application.scss application.css

@mixin respond-to($query) { .sidebar {
@media (min-width: Squery) { border: 1lpx solid #ccc;
@content }
} @media (min-width: 900px) {
} .sidebar {
.sidebar { float: right;
border: 1lpx solid #ccc; width: 30%;
@include respond-to(900px) { }
float: right; }
width: 30%;

application.scss application.css

@mixin respond-to(val, SSquery) { .sidebar {

@media (Sval: Squery) { border: 1lpx solid #ccc;
@content }

} @media (max-width: 600px) {
} .sidebar {

.sidebar { float: right;
border: 1lpx solid #ccc; width: 30%;

@include respond-to(max-width, }
600px) }
float: right;
width: 30%;

Declarations outside @media cannot be extended inside:

application.scss

.sidebar {
border: 1lpx solid #ccc;

}
.callout {

@media (min-width: 700px) {
@extend .sidebar;
width: 35%:

}

deprecation warning fov now,
cowm?Pile evvor soow

}

application.scss application.css

@media (min-width: 700px) { @media (min-width: 700px) {
.content { .content,
border: 1lpx solid #ccc; .aside {
} border: lpx solid #ccc;
.aside { }
@extend .content; .aside {

width: 2 width: 35%;
} }
}

extemd’ma Something
W the Sawe
wedid query 1S Ok

Matching media queries are not combined:

application.scss application.css

.sidebar { P emedia (min-width: 700px) {
@media (min-width: .sidebar {
width: 50%; width: 50%;
} }

} }
.callout { }@media (min-width: 700px) {

@media (min-width: .callout {
width: 35%; width: 35%;
} }
} }

Sometimes, manual combination is best:

application.css

R

g

1.4 Responsive Pitfalls

v, S

!%x

&

— —— - - -

, ,LLI";BLI\IG SASS

