Usando expresiones regulares en Python &l

miércoles, 04 de enero de 2006

Desde el pan con nocilla, no se ha inventado mejor que las expresiones regulares. Una expresion PYTHON
regular es, basicamente, un patrén que describe a un cierto texto. Si has estudiado informatica powered
(no ordenadores, ni procesadores de texto) sabras algo de las matematicas (si, la informética

tiene algo que ver con las matematicas) que hay detras de todo esto. Sin embargo, aqui no voy hablar de eso, sino de
como utilizar expresiones regulares en Python a través del médulo re.

Lo basico

Para empezar veamos un ejemplo sencillo. Puedes probar todo esto utilizando el intérprete interactivo de comandos:

>>> import re

>>> if (re.search('b", "abc'™)):
print "b esta en abc"

b esta en abc

El ejemplo es claro, se busca el patron b en la cadena abc, utilizando la funcién search del médulo re. Veamos algo
parecido utilizando una expresién un poco méas complicada:

>>> if (re.search('\aa[0-9].*(end|fin)$", "a7fin'™)):
print "se ha encontrado el patrén”

éé ha encontrado el patrén
>>> if (re.search("'\aa[0-9].-*(end|fin)$", "a2 lo que quiera fin™)):
print '"'se ha encontrado el patron™

se ha encontrado el patrén

En este caso, todas las cadenas que comienzen (\A) con a seguidas de un namero ([0-9]), y de cualquier secuencia
de caracteres (.*) y terminadas ($) en end o fin ((end | fin)) encajaran con el patrén \Aa[0-9].*(end|fin)$. Sencillo
¢no?

En el ejemplo anterior hemos visto que pasamos como parametro la expresion regular y la cadena en la que queremos
buscar. Esto esta bien si queremos aplicar la expresion regular una sola vez. Sin embargo, si vamos a utilizar la
expresion regular varias veces, que es lo habitual, por motivos de eficiencia conviene compilar la expresién creando un
objeto expresion regular. Veamos mas ejemplos:

>>> pattern = re.compile ("H.*-HRV__.*-0000(19]2[01234])_-*$")
>>> name_Ffiles = [

"H-000-MSG1__-MSG1 -HRV -000019__ -200601040930-C_-",
-.. "H-000-MSG1__ -MSG1 -HRV -000020___ -200601040930-C_-",
-.. "H-000-MSG1__ -MSG1 -HRV -000021__ -200601040930-C_-,
-.. "H-000-MSG1__ -MSG1 -HRV -000022__ -200601040930-C_-,
... "H-000-MSG1__ -MSG1 -HRV -000023___ -200601040930-C_",
... "H-000-MSG1__ -MSG1 -HRV -000024__ -200601040930-C_",
... "H-000-MSG1__ -MSG1 -HRV -000025__ -200601040930-C_",
... "H-000-MSG1__ -MSG1 -HRV -000001__ -200601040930-C_",
-.. "H-000-MSG1__ -MSG1 -HRV -000005__ -200601040930-C_-",
-.. "H-000-MSG1__ -MSG1 -HRV -000010__ -200601040930-C_-",
-.. "H-000-MSG1__ -MSG1 -HRV -000015__ -200601040930-C_-",
-.. "H-000-MSG1__ -MSG1 -HRV -000018__ -200601040930-C_*

1

>>> for name in name_Files:

if (pattern.search(name)):
print name + " OK"

T else:

print name + " NO OK"

H-000-MSG1__-MSG1 -HRV -000019__ -200601040930-C_ OK
H-000-MSG1__-MSG1 -HRV -000020___ -200601040930-C_ OK
H-000-MSG1__-MSG1 -HRV -000021__ -200601040930-C_ OK
H-000-MSG1__-MSG1 -HRV -000022__ -200601040930-C_ OK
H-000-MSG1__-MSG1 -HRV -000023 -200601040930-C_ OK

H-000-MSG1__-MSG1 -HRV -000024 -200601040930-C_ OK

H-000-MSG1__-MSG1 -HRV -000025 -200601040930-C_ NO OK

H-000-MSG1__-MSG1 -HRV -000001__ -200601040930-C_ NO OK
H-000-MSG1__-MSG1 -HRV -000005__ -200601040930-C_ NO OK
H-000-MSG1__-MSG1 -HRV -000010___ -200601040930-C_ NO OK
H-000-MSG1__-MSG1 -HRV -000015__ -200601040930-C_ NO OK
H-000-MSG1__-MSG1 -HRV -000018__ -200601040930-C_ NO OK

Este ejemplo esta extraido de Meteogest, que hace uso de expresiones regulares para decidir qué operaciones realizar
con archivos basandose en su nombre. En este caso sélo interesan los ficheros que en el penultimo campo, su valor sea
del 19 al 24. El patron utilizado es sencillo, y obviamente, para este ejemplo podria simplificarse, pero he querido
conservarlo tal y como esta en el fichero de configuracion de ejemplo de Meteogest.

Noétese que las expresiones regulares distinguen entre mayusculas y minudsculas por lo que:

>>> pattern = re.compile ("H")

>>> result = pattern.search("aloha®)
>>> result == None

True

En cambio, si:

>>> pattern = re.compile ("H", re.lIGNORECASE)
>>> result = pattern.search("aloha®)

>>> result == None

False

Puedes consultar otros flags a la hora de construir un patron en la documentacion del mddulo re.

También podemos aplicar split con expresiones regulares, lo que es realmente (til:

>>> pattern = re.compile ("a[bc]")

>>> text = "e8acjhf90abcklhd78ac867acaba8”
>>> pattern.split(text)

["e8", "jhfo0", "cklhd78", "867", "", "a8"]

search Vs match

Si se observan los métodos de los objetos expresion regular, se vera que hay dos funciones, search y match. La
direferencia entre ambas es que search busca en toda la cadena mientras que match sélo lo hace al principio.

Utilizaremos un patrén atil para decidir si en una cadena aparece el caracter ".". Como es un caracter que tiene un
significado en expresiones regulares, es necesario utilizar el caracter de escape \:

>>> pattern = re.compile ("\.")

>>> result pattern_search (" .gnome™)
>>> result == None

False

>>> result
>>> result
False

>>> result

pattern.search ("gno.me*")
= None

pattern_.match (".gnome*®)

>>> result == None

False

>>> result = pattern.match ("gno.me")
>>> result == None

True

Por tanto se puede decir que search("\Apattern", text) es lo mismo match(pattern, text).
Los objetos Match

Hasta ahora hemos evaluado expresiones y decidido si verifican un patrén en funcién de si el valor de retorno es None
0 no. En Python None se evalGa como False por lo que es adecuado para estructuras condicionales. Sin embargo,
cuando el valor de retorno no es None, se devuelve un objeto de tipo Match (que se evalla como cualquier objeto
como True). Veamos qué métodos contiene:

>>> pattern = re.compile ("a[bc]")

>>> result = pattern.search ("e8acjhf90abcklhd78ac867acaba8")
>>> dir (result)

[_copy_ *, "__deepcopy__", "end", “expand~,

"group®, “groupdict®, “groups®, “span®, “start"]

>>> result.string

"e8acjhf90abcklhd78ac867acaba8*

>>> result.string[result.start():result.end(Q)]

"ac"

Observando la cadena del ejemplo, vemos que el patron se repite mas de una vez. Para procesar cada uno de ellos:

>>> text = "e8acjhf90abcklhd78ac867acaba8”
>>> jterator = pattern.finditer (text)

>>> result iterator:

R text[result._start():result.end()]
ac

ab

ac

ac

ab

Finalmente, el método group. Podemos dar un nombre a uno o un conjunto de elementos del patron y luego referirnos
a ellos. Como siempre, un ejemplo es mucho mas Gtil que cualquier explicacion:

>>> pattern = re.compile ("(?P<name>.+)\.(?P<extension>.+)")
>>> result = pattern.match ("hello.txt")

>>> result.group(“name*)

"hello”

>>> result.group(“extension®)

"txt”

Conclusion

Y eso es todo. Conviene conocer muy bien las herramientas con las que contamos a la hora de programar soluciones a
nuestros problemas. La expresiones regulares son una herramienta muy Util, cuya potencia sélo se descubre cuando se
necesita hacer uso extensivo de ellas. Casi cualquier operacion de manipulacion de cadenas se puede hacer de manera
eficiente con expresiones regulares. Buscar patrones en textos es muy sencillo, asi como validar que determinadas
cadenas cumplan ciertas condiciones. Por ejemplo, pueden buscar en Internet expresiones regulares que verifiquen si
una direccién de correo electrdnico es o no correcta (puede ser mas complicado de lo que parece si se es estricto) e
integrar esta verificacion en sus aplicaciones. E infinitas cosas mas.

Comentario[s]

KarlsBerg
Escrito por Invitado el 2006-01-15 13:43:53

Muy bueno, te pido permiso para afiadir este link a la biblioteca de documentacion python en espafiol que tengo en
dotpy.net.

Gracias

Licencia de la pagina
Escrito por Javi el 2006-01-15 13:54:50

Si lees la licencia, veras que no necesitas pedir permiso para reproducir cualquier articulo. Lo Unico es que no utilices
el articulo con fines comerciales y no hagas obras derivativas (aunque en el caso de este articulo esto tiene poco
sentido).

Lo Unico que has de hacer es incluir un enlace al articulo original como reconociemto.

Y si, puedes linkarlo (eso ni se pregunta) ;)

muy interesantei
Escrito por Invitado el 2006-02-12 20:38:15

gueria pedirte algun consejo de como poder empesar con esto de la programacion por mi cuenta. ya que no tengo los
recursos como para estudiar en alguna escuela . mi nombre es sergio tengo 14 afios y te pido por favor informacion
mi correo es sergio22_2468hotmail.com

grasias

tkinter
Escrito por horacio el 2006-04-13 01:45:50

esta bueno el tuto...aunque le falta lo mas interesnte de esto de programar que es lo grafico supongo que decir algo
sobre el modulo tkinter o sobre wxwindows no estaria hada mal ya que no hay mucho de eso en espafiol.

Escribe tu comentario

Por favor cifiete al tema del articulo, sé educado y no envies spam. Gracias por participar

Nombre: |

Titulo: I

BBCode: & [= [[[I][u [=][e (= E E
Comentario

Ce0Ee
EElore
DEOO

ElElelere
EOTOO

62K8P :

Escribe lo que ves: *
Pulsa en recargar si tienes problemas para distinguir la imagen

Enviar |

Powered by AkoComment 2.2 *** Securitylmage 2.2.0

Cerrar ventana

