
Universidad de Deusto
. . . .

ESIDE

Python: descubre el poder del
lenguaje scripting de moda en la
comunidad open source

Dr. Diego Lz. de Ipiña Gz. de Artaza
http://paginaspersonales.deusto.es/dipina

Universidad de Deusto
. . . .

ESIDE

El otro lenguaje de programación
que empieza con 'P'

 Python fue creado por Guido van Rossum (
http://www.python.org/~guido/)
 Da este nombre al lenguaje inspirado por el

popular grupo cómico británico Monty Python

 Guido creó Python durante unas
vacaciones de navidad en las que (al
parecer) se estaba aburriendo

Universidad de Deusto
. . . .

ESIDE

Hola Mundo en Python

#!/usr/bin/env python

print "Hola Mundo" # "Hola Mundo"

print "hola", "mundo" # "hola mundo"

print "Hola" + "Mundo" # "HolaMundo"

Universidad de Deusto
. . . .

ESIDE

Características de Python I
 Muy legible y elegante

 Imposible escribir código ofuscado
 Simple y poderoso

 Minimalista: todo aquello innecesario no hay que escribirlo (;,
{, }, '\n')

 Muy denso: poco código hace mucho
 Soporta objetos y estructuras de datos de alto nivel: strings,

listas, diccionarios, etc.
 Múltiples niveles de organizar código: funciones, clases,

módulos, y paquetes
 Python standard library (

http://www.python.org/doc/current/lib/lib.html) contiene un sinfín
de clases de utilidad

 Si hay áreas que son lentas se pueden reemplazar por plugins
en C o C++, siguiendo la API para extender o empotrar Python
en una aplicación, o a través de herramientas como SWIG, sip
o Pyrex.

Universidad de Deusto
. . . .

ESIDE

Características de Python II
 De scripting

 No tienes que declarar constantes y variables antes de utilizarlas
 No requiere paso de compilación/linkage

 La primera vez que se ejecuta un script de Python se compila y
genera bytecode que es luego interpretado

 Alta velocidad de desarrollo y buen rendimiento
 Código interoperable (como en Java "write once run everywhere")

 Se puede utilizar en múltiples plataforma (más aún que Java)
 Puedes incluso ejecutar Python dentro de una JVM (Jython)

 Open source
 Razón por la cual la Python Library sigue creciendo y creciendo

 De propósito general
 Puedes hacer en Python todo lo que puedes hacer con C# o Java, o

más

Universidad de Deusto
. . . .

ESIDE

Peculiaridades sintácticas
 Python usa tabulación (o espaciado) para mostrar

estructura de bloques
 Tabula una vez para indicar comienzo de bloque
 Des-tabula para indicar el final del bloque

if x:

 if y:

 f1()

 f2()

if (x) {

 if (y) {

 f1();

 }

 f2();

}

Código en PythonCódigo en C/Java

Universidad de Deusto
. . . .

ESIDE

Python vs. Perl

 Los dos están basados en un buen
entendimiento de las herramientas necesarias
para resolver problemas
 Perl está basado en awk, sed, and shell scripting y

su misión es hacer las tareas de administradores de
sistemas más sencillas

 Python está basado e inspirando por OOP (Object-
oriented programming)

 Guido van Rossum diseñó un lenguaje simple, poderoso, y
elegante orientado a la creación de sistemas a partir de
componentes

Universidad de Deusto
. . . .

ESIDE

Python vs. Java
 Java es un lenguaje de programación muy completo

que ofrece:
 Amplio abanico de tipos de datos
 Soporte para threads
 Strong typing
 Y mucho más ...

 Python es un lenguaje de scripting:
 No ofrece strong typing

 Bueno para prototipos pero malo para grandes sistemas
 Puede cascar en tiempo de ejecución

 Todo lo que puedes hacer con Java también lo puedes
hacer con Python

 Incluso puedes acceder a través de Python a las API de Java si
usas Jython (http://www.jython.org)

Universidad de Deusto
. . . .

ESIDE

Python vs. Jython

 Python
 También llamado Cpython
 Implementación del lenguaje Python en C
 Python C API permite extender Python con librerías

realizadas en C
 Partes que requieren mayor rendimiento en Python

están implementadas en C o C++ y tan sólo
contienen una pequeña capa de Python encima

 Jython
 Implementación de Python en Java
 Permite acceder a todas las APIs de Java

 P.E. Podemos producir Swing GUIs desde Python

Universidad de Deusto
. . . .

ESIDE

¿Para qué [no] es útil?

 Python no es el lenguaje perfecto, no es bueno para:
 Programación de bajo nivel (system-programming), como

programación de drivers y kernels
 Python es de demasiado alto nivel, no hay control directo sobre

memoria y otras tareas de bajo nivel
 Aplicaciones que requieren alta capacidad de computo

 No hay nada mejor para este tipo de aplicaciones que el viejo C
 Python es ideal:

 Como lenguaje "pegamento" para combinar varios componentes
juntos

 Para llevar a cabo prototipos de sistema
 Para la elaboración de aplicaciones cliente
 Para desarrollo web y de sistemas distribuidos
 Para el desarrollo de tareas científicas, en los que hay que

simular y prototipar rápidamente

Universidad de Deusto
. . . .

ESIDE

Instalar Python

 Bajar versión de Python de
http://www.python.org/download/
 Para Windows ejecutar instalador
 Para Linux, usar rpms disponibles en:

http://www.python.org/2.3.3/rpms.html
 rpm -iv

python2.3-2.3.3-pydotorg.i386.rpm

Universidad de Deusto
. . . .

ESIDE

Usando Python desde línea
comando

 Para arrancar el intérprete (Python interactivo) ejecutar:
$ python

Python 2.3.3 (#1, Dec 30 2003, 08:29:25)

[GCC 3.3.1 (cygwing special)] on cygwin

Type "help", "copyright", "credits" or "license" for more
information.

>>>
 Un comando simple:

>>> print "Hola Mundo"

Hola Mundo

>>>
 Para salir del intérprete Ctrl-D (en Linux) o Ctrl-Z (en Linux) o:

>>> import sys

>>> sys.exit()

$

Universidad de Deusto
. . . .

ESIDE

Ejecutando programa
holamundo.py
 Python desde script:

 Guardar siguientes sentencias en fichero: holamundo.py

#!/usr/bin/env

python print "Hello World"

 Ejecutar el script desde línea de comando:

$ python helloworld.py

Hello World

$

Universidad de Deusto
. . . .

ESIDE

Sentencias y bloques

 Las sentencias acaban en nueva línea, no en ;
 Los bloques son indicados por tabulación que sigue a una sentencia

acabada en ':'. E.j. (bloque.py):

comentarios de línea se indican con carácter '#'
name = "Diego1" # asignación de valor a variable
if name == "Diego":

print "Aupa Diego"
else:

print "¿Quién eres?"
print "¡No eres Diego!"

$ python bloque.py
¿Quién eres?
¡No eres Diego!

Universidad de Deusto
. . . .

ESIDE

Identificadores
 Los identificadores sirven para nombrar variables,

funciones y módulos
 Deben empezar con un carácter no numérico y contener

letras, números y '_'
 Python es case sensitive

 Palabras reservadas:
 and elif global or assert else if pass break
except import print class exec in raise
continue finally is return def for lambda try
del from not while

 Variables y funciones delimitadas por __ corresponden
a símbolos implícitamente definidos:
 __name__ nombre de función
 __doc__ documentación sobre una función
 __init__() constructor de una clase

Universidad de Deusto
. . . .

ESIDE

Tipos de datos I

 Numéricos (integer, long integer, floating-point, and
complex)

>>> x = 4
>>> int (x)
4
>>> long(x)
4L
>>> float(x)
4.0
>>> complex (4, .2)
(4+0.2j)

Universidad de Deusto
. . . .

ESIDE

Tipos de datos II
 Strings, delimitados por un par de (', " ,""")

 Dos string juntos sin delimitador se unen
>>> print "Hi" "there"

Hithere
 Los códigos de escape se expresan a través de '\':

>>>print '\n'
 Raw strings

>>> print r'\n\\' # no se 'escapa' \n
 Lo mismo ' que ", p.e. "\\[foo\\]" r'\[foo\]'
 Algunos de los métodos que se pueden aplicar a un string son:

>>> len('La vida es mucho mejor con Python.')
>>> 34
>>> 'La vida es mucho mejor con Python.'.upper()
'LA VIDA ES MUCHO MEJOR CON PYTHON'
>>> "La vida es mucho mejor con Python".find("Python")
27
>>> "La vida es mucho mejor con Python".find('Perl')
-1
>>> 'La vida es mucho mejor con Python'.replace('Python', 'Jython')

'La vida es mucho mejor con Jython'

Universidad de Deusto
. . . .

ESIDE

Tipos de datos III
 El módulo string de la Python library define

métodos para manipulación de strings:
>>> import string

>>> s1 = 'La vida es mejor con Python'

>>> string.find(s1, 'Python')

21

 '%' es el operador de formateo de cadenas:
>>> provincia = 'Araba'

>>> "La capital de %s es %s" % (provincia,
"Gasteiz")

'La capital de Araba es Gasteiz'
 Los caracteres de formateo son los mismos que en C, p.e. d, f, x

Universidad de Deusto
. . . .

ESIDE

Tipos de datos IV
 Listas []

 Indexadas por un entero comienzan en 0:
>>> meses = ["Enero", "Febrero"]
>>> print meses[0]
Enero
>>> meses.append("Marzo")
>>> print meses
['Enero', 'Febrero', 'Marzo']

 Dos puntos (:) es el operador de rodajas, permite trabajar con una
porción de la lista, el elemento indicado por el segundo parámetro no se
incluye:
>>> print meses[1:2]
['Febrero']

 Más (+) es el operador de concatenación:
 >>> print meses+meses
 ['Enero', 'Febrero', 'Marzo', 'Enero', 'Febrero',
'Marzo']

Universidad de Deusto
. . . .

ESIDE

Tipos de datos IV
 Las listas pueden contener cualquier tipo de objetos Python:
>>> meses.append (meses)
>>> print meses
['Enero', 'Febrero', 'Marzo', ['Enero', 'Febrero', 'Marzo']]
>>> meses.append(1)
['Enero', 'Febrero', 'Marzo', ['Enero', 'Febrero', 'Marzo'], 1]

 Para añadir un elemento a una lista:
>>> items = [4, 6]
>>> items.insert(0, -1)
>>> items
[-1, 4, 6]
 Para usar una lista como una pila, se pueden usar append y pop:
>>> items.append(555)
>>> items [-1, 4, 6, 555]
>>> items.pop()
555
>>> items [-1, 4, 6]

Universidad de Deusto
. . . .

ESIDE

Tipos de datos V
 Tuplas (), lo mismo que listas, pero no se pueden modificar, e.j. (1,

2)
 Diccionarios {} arrays asociativos o mapas, indexados por una clave, la

cual puede ser cualquier objeto Python, aunque normalmente es una
tupla:
>>> mydict = {"altura" : "media", "habilidad" : "intermedia",
"salario" : 1000 }
>>> print mydict
{altura': 'media', 'habilidad': 'intermedia', 'salario': 1000}
>>> print mydict["habilidad"]
intermedia
 Puedes comprobar la existencia de una clave en un diccionario usando

has_key:
if mydict.has_key('altura'):

print 'Nodo encontrado'
 Lo mismo se podría hacer:
if 'altura' in mydict:

print 'Nodo encontrado'

Universidad de Deusto
. . . .

ESIDE

Control de flujo: condicionales
 E.j. (condicional.py)

q = 4

h = 5

if q < h :

 print "primer test pasado"

else:

 print "segundo test pasado"

>>> python condicional.py

primer test pasado

 Operadores booleanos: "or," "and," "not"
 Operadores relacionales: ==, >, <, =

Universidad de Deusto
. . . .

ESIDE

Control de flujo: bucles
 for se utiliza para iterar sobre los miembros de una

secuencia
 Se puede usar sobre cualquier tipo de datos que sea una

secuencia (lista, tupla, diccionario)
 Ej. bucle.py

for x in range(1,5):

 print x

$ python bucle.py

1 2 3 4

 La función range crea una secuencia descrita por
([start,] end [,step]), donde los campos
start y step son opcionales. Start es 0 y step
es 1 por defecto.

Universidad de Deusto
. . . .

ESIDE

Control de flujo: bucles
 while es otra sentencia de repetición. Ejecuta un bloque de

código hasta que una condición es falsa.
 break nos sirve para salir de un bucle
 Por ejemplo:

reply = 'repite'
while reply == 'repite':
 print 'Hola'
 reply = raw_input('Introduce "repite" para

hacerlo de nuevo: ')

Hola
Introduce "repite" para hacerlo de nuevo:

repite
Hola
Introduce "repite" para hacerlo de nuevo: adiós

Universidad de Deusto
. . . .

ESIDE

Funciones
 Una función se declara usando la palabra clave def

funcionsimple.py
def myfunc(a,b):
 sum = a + b
 return sum
print myfunc (5,6)
$ python funcionsimple.py
11

 A una función se le pueden asignar parámetros por defecto:
funcionvaloresdefecto.py
def myfunc(a=4,b=6):
 sum = a + b
 return sum
print myfunc()
print myfunc(b=8) # a es 4, sobreescribir b a 8
$ python funcion.py
10
12

Universidad de Deusto
. . . .

ESIDE

Funciones
 Listas de argumentos y argumentos basados en palabras clave:
funcionargumentosvariablesyconclave.py
def testArgLists_1(*args, **kwargs):
 print 'args:', args
 print 'kwargs:', kwargs
testArgLists_1('aaa', 'bbb', arg1='ccc', arg2='ddd')
def testArgLists_2(arg0, *args, **kwargs):
 print 'arg0: "%s"' % arg0
 print 'args:', args
 print 'kwargs:', kwargs
print '=' * 40
testArgLists_2('un primer argumento', 'aaa', 'bbb', arg1='ccc',

arg2='ddd')
 Visualizaría:
args: ('aaa', 'bbb')
kwargs: {'arg1': 'ccc', 'arg2': 'ddd'}
==
arg0: "un primer argumento"
args: ('aaa', 'bbb')

kwargs: {'arg1': 'ccc', 'arg2': 'ddd'}

Universidad de Deusto
. . . .

ESIDE

Clases
 Una clase contiene una colección de métodos. Cada método contiene como primer

parámetro (self) que hace referencia a un objeto
 self equivalente a this en C++

clasepinguinos.py
class PenguinPen:
 def __init__(self):
 self.penguinCount = 0
 def add (self, number = 1):
 """ Add penguins to the pen. The default number is 1 """
 self.penguinCount = self.penguinCount + number
 def remove (self, number = 1):
 """ Remove one or more penguins from the pen """
 self.penguinCount = self.penguinCount - number
 def population (self):
 """ How many penguins in the pen? """
 return self.penguinCount

penguinPen = PenguinPen()
penguinPen.add(5) # Tux y su familia
print penguinPen.population()

$ python PenguinPen.py
5

Universidad de Deusto
. . . .

ESIDE

Más clases
clasesherencia.py
class Basic:
 def __init__(self, name):
 self.name = name
 def show(self):
 print 'Basic -- name: %s' % self.name
class Special(Basic): # entre paréntesis la clase base
 def __init__(self, name, edible):
 Basic.__init__(self, name) # se usa Basic para referir a
 self.upper = name.upper() # clase base
 self.edible = edible
 def show(self):
 Basic.show(self)
 print 'Special -- upper name: %s.' % self.upper,
 if self.edible:
 print "It's edible."
 else:
 print "It's not edible."
 def edible(self):
 return self.edible

Universidad de Deusto
. . . .

ESIDE

Probando clases
obj1 = Basic('Manzana')

obj1.show()

print '=' * 30

obj2 = Special('Naranja', 1)

obj2.show()

 Visualizaría:
Basic -- name: Manzana

==============================

Basic -- name: Naranja

Special -- upper name: NARANJA. It's edible.

Universidad de Deusto
. . . .

ESIDE

Excepciones
 Cada vez que un error ocurre se lanza una excepción, visualizándose

un extracto de la pila del sistema. E.j. excepcion.py:
#!/usr/bin/python
print a
$ print exception.py

Traceback (innermost last): File "exception.py", line 2, in

? print a NameError: a

 Para capturar la excepción se usa except:
try:
 fh=open("new.txt", "r")
except IOError, e:
 print e
$ python excepcion.py
[Errno 2] No such file or directory: 'new.txt'

 Puedes lanzar tu propia excepción usando el comando raise:
raise MyException
raise SystemExitModules

Universidad de Deusto
. . . .

ESIDE

Excepciones personalizadas
excepcionpersonalizada.py
class E(RuntimeError):
 def __init__(self, msg):
 self.msg = msg
 def getMsg(self):
 return self.msg
try:
 raise E('mi mensaje de error')
except E, obj:
 print 'Msg:', obj.getMsg()

 Visualizaría:
Msg: mi mensaje de error

Universidad de Deusto
. . . .

ESIDE

Módulos
 Un módulo es una colección de métodos en un fichero que

acaba en .py. El nombre del fichero determina el nombre del
módulo en la mayoría de los casos.

 E.j. modulo.py:
def one(a):
 print "in one"
def two (c):
 print "in two"

 Uso de un módulo:
>>> import modulo
>>> dir(modulo) # lista contenidos módulo
['__builtins__', '__doc__', '__file__', '__name__',
'one', 'two']
>>> modulo.one(2)
in one

Universidad de Deusto
. . . .

ESIDE

Módulos II

 import hace que un módulo y su contenido sean
disponibles para su uso.

 Algunas formas de uso son:
import test
 Importa modulo test. Referir a x en test con "test.x".
from test import x
 Importa x de test. Referir a x en test con "x".
from test import *
 Importa todos los objetos de test. Referir a x en test

con "x".
import test as theTest
 Importa test; lo hace disponible como theTest. Referir

a objecto x como "theTest.x".

Universidad de Deusto
. . . .

ESIDE

Paquetes I
 Un paquete es una manera de organizar un conjunto de

módulos como una unidad. Los paquetes pueden a su vez
contener otros paquetes.

 Para aprender como crear un paquete consideremos el
siguiente contenido de un paquete:
package_example/
package_example/__init__.py
package_example/module1.py
package_example/module2.py

 Y estos serían sus contenidos:
__init__.py
Exponer definiciones de módulos en este paquete.
from module1 import class1
from module2 import class2

Universidad de Deusto
. . . .

ESIDE

Paquetes II
module1.py
class class1:
 def __init__(self):
 self.description = 'class #1'
 def show(self):
 print self.description

module2.py
class class2:
 def __init__(self):
 self.description = 'class #2'
 def show(self):
 print self.description

Universidad de Deusto
. . . .

ESIDE

Paquetes III
testpackage.py
import package_example
c1 = package_example.class1()
c1.show()
c2 = package_example.class2()
c2.show()
 Visualizaría:
class #1
class #2
 La localización de los paquetes debe especificarse o bien a

través de la variable de entorno PYTHONPATH o en código del
script mediante sys.path

Universidad de Deusto
. . . .

ESIDE

Paquetes IV
 Como en Java el código de un paquete puede recogerse en un .zip:
>>> import zipfile
>>> a=zipfile.PyZipFile('mipackage.zip', 'w', zipfile.ZIP_DEFLATED)
>>> a.writepy('package_example')
>>> a.close()
>>> ^Z
 Luego lo puedes importar y usar insertando su path en sys.path o

alternativamente añadiendo a la variable de entorno PYTHONPATH una
referencia al nuevo .zip creado:

$ mkdir prueba; cp mipackage.zip prueba
$ export PYTHONPATH=/home/dipina/examples/prueba/mipackage.zip
>>> import sys # esta y la siguiente no hacen falta si se ha

inicializado PYTHONPATH
>>> sys.path.insert(0, '/home/dipina/examples/prueba/mipackage.zip')
>>> import package_example
>>> class1 = package_example.module1.class1()
>>> class1.show()
class #1
>>> ^Z

Universidad de Deusto
. . . .

ESIDE

Manejo de ficheros
 Leer un fichero (leerfichero.py)

fh = open("holamundo.py") # open crea un objeto de tipo fichero
for line in fh.readlines() : # lee todas las líneas en un fichero
 print line,
fh.close()
$ python leerfichero.py
#!/usr/bin/python
print "Hola mundo"

 Escribir un fichero (escribirfichero.py)

fh = open("out.txt", "w")
fh.write ("estamos escribiendo ...\n")
fh.close()
$ python escribirfichero.py
$ cat out.txt
 estamos escribiendo ...

Universidad de Deusto
. . . .

ESIDE

Más sobre print
 print (printredirect.py)

 stdout en Python es sys.stdout, stdin es sys.stdin:

import sys
class PrintRedirect:
 def __init__(self, filename):
 self.filename = filename
 def write(self, msg):
 f = file(self.filename, 'a')
 f.write(msg)
 f.close()
sys.stdout = PrintRedirect('tmp.log')
print 'Log message #1'
print 'Log message #2'
print 'Log message #3'

Universidad de Deusto
. . . .

ESIDE

Variables globales en Python
 Usar identificador global para referirse a variable global:
variableglobal.py
NAME = "Manzana"
def show_global():
 name = NAME
 print '(show_global) nombre: %s' % name
def set_global():
 global NAME
 NAME = 'Naranja'
 name = NAME
 print '(set_global) nombre: %s' % name
show_global()
set_global()
show_global()

 Lo cual visualizaría:
(show_global) nombre: Manzana
(set_global) nombre: Naranja

(show_global) nombre: Naranja

Universidad de Deusto
. . . .

ESIDE

Serialización de objetos
 Pickle: Python Object Serialization

 El módulo pickle implementa un algoritmo para la serialización y
deserialización de objetos Python

 Para serializar una jerarquía de objetos, creas un Pickler, y luego
llamas al método dump()

 Para deserializar creas un Unpickler e invocas su método load()
method.

 El módulo shelve define diccionarios persistentes, las claves
tienen que ser strings mientras que los valores pueden ser
cualquier objeto que se puede serializar con pickle

import shelve
d = shelve.open(filename) # abre un fichero
d[key] = data # guarda un valor bajo key
data = d[key] # lo recupera
del d[key] # lo borra

Universidad de Deusto
. . . .

ESIDE

Programación de BD en
Python

 Lo que es JDBC en Java es DB API en Python
 Información detallada en: http://www.python.org/topics/database/

 Para conectarnos a una base de datos usamos el método connect del
módulo de base de datos utilizado que devuelve un objeto de tipo
conection

 El objeto connection tiene el método cursor() que sirve para
recuperar un cursor de la BD

 Otros métodos definidos en connection son close(), commit(),
rollback(), cursor()

 El objeto cursor define entre otros los siguientes métodos:
 execute() nos permite enviar una sentencia SQL a la BD
 fetchone() recuperar una fila
 fetchall() recuperar todas las filas

 Hay varios módulos que implementan el estándar DB-API:
 DCOracle (http://www.zope.org/Products/DCOracle/) creado por Zope
 MySQLdb (http://sourceforge.net/projects/mysql-python)

 MySQL-python.exe-0.9.2.win32-py2.3.exe para Windows
 MySQL-python-0.9.2-1.i386.rpm para Linux

 Etc.

Universidad de Deusto
. . . .

ESIDE

Ejemplo programación BD en
Python con MySQL I

 Creamos una base de datos de nombre deusto a la que podemos hacer login con
usuario deusto y password deusto, a través del siguiente SQL:

CREATE DATABASE deusto;

GRANT ALTER, SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
ON deusto.*
TO deusto@'%'
IDENTIFIED BY 'deusto';

GRANT ALTER, SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
ON deusto.*
TO deusto@localhost
IDENTIFIED BY 'deusto';

Use deusto;

CREATE TABLE EVENTOS(ID int(11) NOT NULL PRIMARY KEY,
NOMBRE VARCHAR(250), LOCALIZACION VARCHAR(250), FECHA bigint(20),

DESCRIPCION VARCHAR(250));

INSERT INTO EVENTOS VALUES (0, 'SEMANA ESIDE', 'ESIDE-DEUSTO', 0,
'Charla sobre Python');

Universidad de Deusto
. . . .

ESIDE

Ejemplo programación BD en
Python con MySQL II

db/accesodbeventos.py
import MySQLdb, time, string, _mysql, _mysql_exceptions
def executeSQLCommand(cursor, command):
 result = ""
 command = string.strip(command)
 if len(command):
 try:
 cursor.execute(command) # Ejecuta el comando
 if string.lower(command).startswith('select'):
 # si es una select ...
 lines = cursor.fetchall() # recuperar todos los

resultados
 for line in lines:
 for column in line:
 if column == None:
 result = result + 'null '
 else:
 result = result + str(column) + ' '
 result = result + '\n'
 except _mysql_exceptions.ProgrammingError, e:
 print e
 sys.exit()
 return result

Universidad de Deusto
. . . .

ESIDE

Ejemplo programación BD en
Python con MySQL III

if __name__ == '__main__':
 db=MySQLdb.connect(host="localhost",user="deusto", passwd="deusto",

db="deusto")
 cursor = db.cursor()
 executeSQLCommand(cursor, "update eventos set fecha=" + str(time.time

()*1000))
 results = executeSQLCommand(cursor, "select * from eventos")
 print results
 print results.split() # crear una lista y la visualiza
 del cursor

 Visualizando lo siguiente:

$ python accesodbeventos.py
0 SEMANA ESIDE ESIDE-DEUSTO 1078901556610 Charla sobre Python

['0', 'SEMANA', 'ESIDE', 'ESIDE-DEUSTO', '1078901556610', 'Charla',
'sobre', 'Python']

Universidad de Deusto
. . . .

ESIDE

Programación de expresiones
regulares I

 A través del módulo re, Python permite el uso de expresiones
regulares similares a como se hace en Perl (una razón más para
moverse de Perl a Python)

regex/procesaUrlConRe.py
import re, urllib, sys
if len(sys.argv) <= 4:
 print "Usage: procesaUrl <url-a-procesar> <palabra-a-

reemplazar> <nueva-palabra> <fichero-html-a-crear>"
 sys.exit(0)
print sys.argv[1]
s = (urllib.urlopen(sys.argv[1])).read() # lee el contenido de

una url
reemplaza todas las ocurrencias de "Artaza" por "artaza"
t = re.sub(sys.argv[2], sys.argv[3], s)
backupFile = open(sys.argv[4], "w")
backupFile.write(t)
backupFile.close()
print 'Fichero ' + sys.argv[4] + ' escrito con contenido de

url: ' + sys.argv[1] + ' al reemplazar palabra ' + sys.argv
[2] + ' con palabra ' + sys.argv[3]

Universidad de Deusto
. . . .

ESIDE

Programación de expresiones
regulares II
conseguir el titulo del documento HTML
tmatch = re.search(r'<title>(.*?)</title>', s, re.IGNORECASE)
if tmatch:
 title = tmatch.group(1)
 print 'Titulo de pagina ' + sys.argv[1] + ' es: ' + title

extraer lista de enlaces url:
pat = re.compile(r'(http://[\w-]*[.\w-]+)')
addrs = re.findall(pat, s)

print 'La lista de enlaces encontrados en esta pagina es: '
for enlace in addrs:
 print enlace

Universidad de Deusto
. . . .

ESIDE

Programación de sistemas
 Por poder se puede incluso llevar a cabo la programación de

sistemas en Python: programación de API de Windows (
http://www.python.org/windows/index.html) y UNIX (módulo
os)

 El módulo os nos da acceso a:
 El entorno del proceso: getcwd(), getgid(), getpid()
 Creación de ficheros y descriptores: close(), dup(), dup2(),

fstat(), open(), pipe(), stat(), socket()
 Gestión de procesos: execle(), execv(), kill(), fork(),

system()
 Gestión de memoria mmap()

 El módulo threading permite la creación de threads en
Python

 Siguiente transparencia muestra como usar módulo
threading para recuperar el contenido de varias urls

Universidad de Deusto
. . . .

ESIDE

Ejemplo threads
#!/usr/bin/env python
import threading # threading/ejemplothreading.py
import urllib
class FetchUrlThread(threading.Thread):
 def __init__(self, url, filename):
 threading.Thread.__init__(self)
 self.url = url
 self.filename = filename
 def run(self):
 print self.getName(), "Fetching ", self.url
 f = open(self.getName()+self.filename, "w")
 content = urllib.urlopen(self.url).read()
 f.write(content)
 f.close()
 print self.getName(), "Saved in ", (self.getName()+self.filename)
urls = [('http://www.python.org', 'index.html'),
 ('http://paginaspersonales.deusto.es/dipina', 'index.html')]
Recuperar el contenido de las urls en diferentes threads
for url, file in urls:
 t = FetchUrlThread(url, file)
 t.start()

Universidad de Deusto
. . . .

ESIDE

Programación de CGIs
 Pasos para desarrollar CGIs en Python:

 Instalar Apache 2.0, disponible en:
http://httpd.apache.org/download.cgi

 Instalar mod_python 3.1.2b:
http://httpd.apache.org/modules/python-download.cgi

 Configurar Apache añadiendo a httpd.conf las siguientes líneas,
para dar soporte a CGIs en Python y PSPs (Python Server Pages):
<Directory "<dir-donde-guardar-python-scripts>">

AddHandler mod_python .py
PythonHandler mod_python.publisher
PythonDebug On

</Directory>

<Directory "<dir-donde-guardar-paginas-psp>">
AddHandler mod_python .psp

 PythonHandler mod_python.psp
PythonDebug On

</Directory>

 Usar el módulo cgi de la Python Library para programar y
seguir documentación de mod_python (http://
www.modpython.org/live/current/doc-html/)

Universidad de Deusto
. . . .

ESIDE

Ejemplo CGI I
cgi-bin/python/holamundo.py
metodos de ayuda del CGI
def _formatAsHTML(req, content):
 req.content_type = "text/html"
 return "<html><head><title>Hola Mundo Python

CGI</title></head><body><h1>Ejemplo Python de CGI</h1><p>" +
content + "</p></body></html>"

def _usage():
 return "Uso: Debes especificar un parametro de nombre ‘quien’,

para saber a quien saludar, e.j: http://localhost:8080/cgi-
bin/python/holamundo.py/diHola?quien=Diego"

Universidad de Deusto
. . . .

ESIDE

Ejemplo CGI II
único método público que se puede invocar al que hay que pasar

obligatoriamente un parametro
def diHola(req, quien=""):
 if not quien:
 return _formatAsHTML(req, _usage())
 return _formatAsHTML(req, "¡Hola " + quien + "!")

si no se especifica un metodo en la url se invoca index por defecto,
es decir http://localhost:8080/cgi-bin/python/holamundo.py
def index(req, **params):
 paramsPassedStr = ""
 if params:
 for param in params:
 paramsPassedStr += (param + "\n")
 return _formatAsHTML(req, "Unico metodo publico en CGI es

diHola
Parametros recibidos: " + paramsPassedStr + "
" + _usage
())

Universidad de Deusto
. . . .

ESIDE

LCE Sentient Library

Universidad de Deusto
. . . .

ESIDE

Ejemplo PSP
 Python Server Pages es la versión Python de JSPs o ASPs

 Permite la inserción de código Python en un documento HTML
 Usa los mismos códigos de escape que los JSPs
 Se permite su uso a través de mod_python de Apache

 http://www.onlamp.com/pub/a/python/2004/02/26/python_server_pages.htm
l

<!– cgi-bin/psp/holamundo.psp -->
<html>
<%
if form.has_key('nombre'):
 saludo = 'Hola, %s!' % form['nombre'].capitalize()
else:
 saludo = 'Hola mundo!'
end
%>
 <h1><%= saludo %></h1>
 <p>Usa parametro 'nombre' para recibir un saludo, e.g.

holamundo.psp?nombre=Diego</p>
</html>

Universidad de Deusto
. . . .

ESIDE

Programación en XML con SAX
 Soporte para SAX en Python es ofrecido por el

módulo xml.sax de la Python Library
 Define 2 métodos:

 make_parser([parser_list])
 Crea y devuelve un objeto SAX XMLReader object

 parse(filename_or_stream, handler[,
error_handler])

 Crea un parser SAX parser y lo usa para procesar el
documento a través de un handler

 El módulo xml.sax.xmlreader define readers
para SAX

 El módulo xml.sax.handler define manejadores
de eventos para SAX: startDocument,
endDocument, starElement, endElement

Universidad de Deusto
. . . .

ESIDE

Ejemplo procesamiento SAX I
xml/ElementCounterSAX.py
Ejecutar: python ElementCounterSAX.py Cartelera.xml
import sys
from xml.sax import make_parser, handler
class ElementCounter(handler.ContentHandler):

 def __init__(self):
 self._elems = 0
 self._attrs = 0
 self._elem_types = {}
 self._attr_types = {}

 def startElement(self, name, attrs):
 self._elems = self._elems + 1
 self._attrs = self._attrs + len(attrs)
 self._elem_types[name] = self._elem_types.get(name, 0) + 1
 for name in attrs.keys():
 self._attr_types[name] = self._attr_types.get(name, 0) + 1

Universidad de Deusto
. . . .

ESIDE

Ejemplo procesamiento SAX II
 def endDocument(self):
 print "There were", self._elems, "elements."
 print "There were", self._attrs, "attributes."

 print "---ELEMENT TYPES"
 for pair in self._elem_types.items():
 print "%20s %d" % pair

 print "---ATTRIBUTE TYPES"
 for pair in self._attr_types.items():
 print "%20s %d" % pair

parser = make_parser()
parser.setContentHandler(ElementCounter())
parser.parse(sys.argv[1])

Universidad de Deusto
. . . .

ESIDE

Procesando XML con DOM
 Python provee el módulo xml.dom.minidom que es

una implementación sencilla de DOM
 El método parse a partir de un fichero crea un

objeto DOM, el cual tiene todos los métodos y
atributos estándar de DOM: hasChildNodes(),
childNodes, getElementsByTagName()

 Para más información sobre procesamiento XML en
Python ir a: http://pyxml.sourceforge.net/topics/
 La distribución PyXML, que no viene en la distribución por

defecto de Python, permite procesamiento un poco más
sofisticado

 http://pyxml.sourceforge.net/topics/

Universidad de Deusto
. . . .

ESIDE

Ejemplo DOM I
xml/ejemploDOM.py
Ejecutar: python ejemploDOM.py Cartelera.xml

#!/usr/bin/env python
import xml.dom.minidom, sys
class Pelicula:
 def __init__(self, codigo, titulo, director, actores):
 self.codigo = codigo
 self.titulo = titulo
 self.director = director
 self.actores = actores

 def __repr__(self):
 return "Codigo: " + str(self.codigo) + " - titulo: " +

self.titulo + " - director: " + self.director + " - actores: " +
self.actores

class PeliculaDOMParser:
 def __init__(self, filename):
 self.dom = xml.dom.minidom.parse(filename)
 self.peliculas = []

Universidad de Deusto
. . . .

ESIDE

Ejemplo DOM II
 def getPeliculas(self):
 if not self.peliculas:
 peliculaNodes = self.dom.getElementsByTagName("Pelicula")
 numPelis = len(peliculaNodes)
 for i in range(numPelis):
 pelicula = peliculaNodes.item(i)
 # Recuperar los attributes de cada nodo Pelicula
 peliAttribs = pelicula.attributes
 codigo = peliAttribs.getNamedItem("codigo").nodeValue
 titulo = peliAttribs.getNamedItem("titulo").nodeValue
 director = peliAttribs.getNamedItem("director").nodeValue
 actores = peliAttribs.getNamedItem("actores").nodeValue
 self.peliculas.append(Pelicula

(codigo,titulo,director,actores))
 return self.peliculas

if __name__ == '__main__':
 domParser = PeliculaDOMParser(sys.argv[1])
 for peli in domParser.getPeliculas():
 print peli

Universidad de Deusto
. . . .

ESIDE

Programación distribuida:
CORBA con omniORBpy
 Desde Python se puede usar tanto CORBA (omniORBpy) como

servicios web (SOAPpy disponible en
http://pywebsvcs.sourceforge.net/)

 En este curso nos concentramos sólo en CORBA:
 Download omniORBpy de: http://omniorb.sourceforge.net/

 Desarrollada por Duncan Grisby en AT&T Labs Cambridge
 Basada en la ORB para C++: omniORB

 Descomprimir y compilar en Linux o simplemente descomprimir en
Windows

 Las siguientes variables de entorno son necesarias:
 PYTHONPATH=<omniORBpy-install-dir>/lib/python;
<omniORBpy-install-dir>\lib\x86_win32

 PATH=$PATH:=<omniORBpy-install-dir>/bin/x86_win32
 LD_LIBRARY_PATH=<omniORBpy-install-
dir>\lib\<platform>

 Para compilar IDL usar: omniidl -bpython <fichero-idl-a-
compilar>

Universidad de Deusto
. . . .

ESIDE

Ejemplo CORBA: IDL
// corba/example_echo.idl
module Example {
 interface Echo {
 string echoString(in string mesg);
 };
};

Universidad de Deusto
. . . .

ESIDE

Ejemplo CORBA: servidor
#!/usr/bin/env python
import sysfrom omniORB import CORBA, PortableServer
Import the stubs and skeletons for the Example module
import Example, Example__POA
Define an implementation of the Echo interface
class Echo_i (Example__POA.Echo):
 def echoString(self, mesg):
 print "echoString() called with message:", mesg
 return mesg
Initialise the ORB
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
Find the root POA
poa = orb.resolve_initial_references("RootPOA")
Create an instance of Echo_ie
i = Echo_i()# Create an object reference, and implicitly activate the objecte
o = ei._this()
Print out the IOR
print orb.object_to_string(eo)
Activate the POA
poaManager = poa._get_the_POAManager()
poaManager.activate()
Everything is running now, but if this thread drops out of the end
of the file, the process will exit. orb.run() just blocks until the
ORB is shut down
orb.run()

Universidad de Deusto
. . . .

ESIDE

Ejemplo CORBA: servidor
#!/usr/bin/env pythonimport sys
Import the CORBA module
from omniORB import CORBA
Import the stubs for the Example module
import Example
Initialise the ORB
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
Get the IOR of an Echo object from the command line (without
checking that the arguments are sensible!)
ior = sys.argv[1]
Convert the IOR to an object reference
obj = orb.string_to_object(ior)
Narrow reference to an Example::Echo objecte
o = obj._narrow(Example.Echo)
if eo is None:
 print "Object reference is not an Example::Echo"
 sys.exit(1)
Invoke the echoString operation
message = "Hello from Python"
result = eo.echoString(message)
print "I said '%s'. The object said '%s'." % (message,result)

Universidad de Deusto
. . . .

ESIDE

Programación de GUIs I
 Tkinter es la GUI toolkit que por defecto viene con

Python (http://www.python.org/doc/current/lib/module-
Tkinter.html)
 Basada en Tcl/tk, no tiene apariencia nativa
 Es lenta pero su uso es muy sencillo
 Pmw (Python meta widgets) (http://pmw.sourceforge.net/)

 Componentes más elaborados encima de Tkinter
 Existen otras toolkits para generación de GUIs:

 wxPython (http://www.wxpython.org/)
 Apariencia nativa, basado en wxWindows (multiplaforma), muy

rápida
 Pythonwin (http://www.python.org/windows/pythonwin/)

 Solamente para Windows, usa directamente la API de Windows
 PyGTK (http://www.pygtk.org/)
 PyQt (http://www.riverbankcomputing.co.uk/pyqt/)

Universidad de Deusto
. . . .

ESIDE

Ejemplo Tkinter I
gui/tkinterwatch.py
from Tkinter import *
import time, sys

class StopWatch(Frame):
 """ Implements a stop watch frame widget. """

 def __init__(self, parent=None, **kw):
 Frame.__init__(self, parent, kw)
 self._start = 0.0
 self._elapsedtime = 0.0
 self._running = 0
 self.timestr = StringVar()
 self.makeWidgets()

 def makeWidgets(self):
 """ Make the time label. """
 l = Label(self, textvariable=self.timestr)
 self._setTime(self._elapsedtime)
 l.pack(fill=X, expand=NO, pady=2, padx=2)

 def _update(self):
 """ Update the label with elapsed time. """
 self._elapsedtime = time.time() - self._start
 self._setTime(self._elapsedtime)
 self._timer = self.after(50, self._update)

 def _setTime(self, elap):
 """ Set the time string to Minutes:Seconds:Hundreths """
 minutes = int(elap/60)
 seconds = int(elap - minutes*60.0)
 hseconds = int((elap - minutes*60.0 - seconds)*100)
 self.timestr.set('%02d:%02d:%02d' % (minutes, seconds, hseconds))

Universidad de Deusto
. . . .

ESIDE

Ejemplo Tkinter II
 def Start(self):
 """ Start the stopwatch, ignore if running. """
 if not self._running:
 self._start = time.time() - self._elapsedtime
 self._update()
 self._running = 1

 def Stop(self):
 """ Stop the stopwatch, ignore if stopped. """
 if self._running:
 self.after_cancel(self._timer)
 self._elapsedtime = time.time() - self._start
 self._setTime(self._elapsedtime)
 self._running = 0

 def Reset(self):
 """ Reset the stopwatch. """
 self._start = time.time()
 self._elapsedtime = 0.0
 self._setTime(self._elapsedtime)

if __name__ == '__main__': root = Tk()
 sw = StopWatch(root)
 sw.pack(side=TOP)
 Button(root, text='Start', command=sw.Start).pack(side=LEFT)
 Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)
 Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)
 Button(root, text='Quit', command=sys.exit(0)).pack(side=LEFT)
 root.mainloop()

Universidad de Deusto
. . . .

ESIDE

Ejemplo de GUI con Pmw

Universidad de Deusto
. . . .

ESIDE

Ejemplo wxPython I

#!/usr/bin/env python

gui/wxPythonSemanaESIDE.py
__author__ = "Diego Ipiña <dipina@eside.deusto.es>"

import wx

class Frame(wx.Frame):
 """Clase frame que visualiza una imagen."""

 def __init__(self, image, parent=None, id=-1,
 pos=wx.DefaultPosition, title='¡Hola, semaneros

ESIDE!'):
 """Crea un Frame y visualiza imagen."""
 temp = image.ConvertToBitmap()
 size = temp.GetWidth(), temp.GetHeight()
 wx.Frame.__init__(self, parent, id, title, pos, size)
 self.bmp = wx.StaticBitmap(parent=self, id=-1,

bitmap=temp)

Universidad de Deusto
. . . .

ESIDE

Ejemplo wxPython II
class App(wx.App):
 """Clase aplicación."""

 def OnInit(self):
 wx.InitAllImageHandlers()
 image = wx.Image('semanaeside.jpg', wx.BITMAP_TYPE_JPEG)
 self.frame = Frame(image)
 self.frame.Show()
 self.SetTopWindow(self.frame)
 return True

def main():
 app = App()
 app.MainLoop()

if __name__ == '__main__':
 main()

 A través del programa wxPython\demo\demo.py se pueden ver demos de
todas las capacidades de wxPython y lo que es más importante vienen
acompañadas de código fuente

Universidad de Deusto
. . . .

ESIDE

Un poco de Jython
 Download Jython de:

 http://www.jython.org/download.html
 Para instalar simplemente ejecutar: java jython-21

 Usa Lift-Off Java-Installer: http://liftoff.sourceforge.net/
 Algunos ejemplos de Jython en:

 http://www.jython.org/applets/index.html
 Documentación básica sobre Jython disponible en:

 http://www.jython.org/docs/usejava.html

Universidad de Deusto
. . . .

ESIDE

Ejemplo Jython: ButtonDemo
http://www.jython.org/applets/button.html
from java import awt, applet
class ButtonDemo(applet.Applet):

 def init(self):
 self.b1 = awt.Button('Disable middle button',

actionPerformed=self.disable)
 self.b2 = awt.Button('Middle button')
 self.b3 = awt.Button('Enable middle button', enabled=0,

actionPerformed=self.enable)
 self.add(self.b1)
 self.add(self.b2)
 self.add(self.b3)

 def enable(self, event):
 self.b1.enabled = self.b2.enabled = 1
 self.b3.enabled = 0

 def disable(self, event):
 self.b1.enabled = self.b2.enabled = 0
 self.b3.enabled = 1

Universidad de Deusto
. . . .

ESIDE

Casos de éxito de Python
 BitTorrent (http://bitconjurer.org/BitTorrent/), sistema P2P que

ofrece mayor rendimiento que eMule
 PyGlobus, permite la programación de Grid Computing (http://

www-itg.lbl.gov/gtg/projects/pyGlobus/)
 ZOPE (www.zope.org) es un servidor de aplicaciones para

construir y gestionar contenido, intranets, portales, y
aplicaciones propietarias

 Industrial Light & Magic usa Python en el proceso de
producción de gráficos por ordenador

 Google usa Python internamente, lo mismo que Yahoo para su
sitio para grupos

 Red Hat Linux utiliza Python para la instalación, configuración,
y gestión de paquetes.

 Más historias de éxito de Python en: http://pbf.strakt.com/
success

Universidad de Deusto
. . . .

ESIDE

Recursos utilizados
 Compilador de Python 2.3.3 y documentación:

 http://www.python.org/2.3.3/
 Extensiones para Windows:

 https://sourceforge.net/projects/pywin32/
 Módulo de bases de datos MySQLdb 0.9.2:

 http://sourceforge.net/projects/mysql-python
 Base de datos MySQL 4.0:

 http://www.mysql.com/downloads/mysql-4.0.html
 omniORBpy

 http://omniorb.sourceforge.net/
 Servidor Apache 2.0 (http://httpd.apache.org/)

 Módulo mod_python para Apache: http://www.modpython.org
 wxPython 2.4:

 http://www.wxpython.org/download.php#binaries
 Jython 2.1

 http://www.jython.org/download.html

