Python: descubre el poder del
lenguaje scripting de moda en la

! comunidad open source

Dr. Diego Lz. de Ipina Gz. de Artaza
http://paginaspersonales.deusto.es/dipina

idad de Deusto

El otro lenguaje de programacion
*W que empieza con 'P’

= Python fue creado por Guido van Rossum (
http://www.python.org/~guido/)

= Da este nombre al lenguaje inspirado por el
popular grupo comico britanico Monty Python

EEEEE

= Guido cred Python durante unas
vacaciones de navidad en las que (al
parecer) se estaba aburriendo

S
il W all |] =
G ' J-I.Jré:.?:

EEEEE

*W Hola Mundo en Python

#!/usr/bin/env python
print "Hola Mundo” # "Hola Mundo"”

print "hola", "mundo" # "hola mundo"”

print "Hola" + "Mundo" # "HolaMundo"

L
i == =
. : ""’-15.1:

ESIDE

=

Universidad de Deusto

*M Caracteristicas de Python I

= Muy legible y elegante

Imposible escribir codigo ofuscado

= Simple y poderoso

ez O Pyrex.

?igim\ali)sta: todo aquello innecesario no hay que escribirlo (;,
, , 1 nl
Muy denso: poco cédigo hace mucho

Soporta objetos y estructuras de datos de alto nivel: strings,
listas, diccionarios, etc.

Mdultiples niveles de organizar codigo: funciones, clases,
modulos, y paquetes
= Python standard library (

http://www.python.org/doc/current/lib/lib.html) contiene un sinfin
de clases de utilidad

Si hay areas que son lentas se pueden reemplazar por plugins
en C o C++, siguiendo la API para extender o empotrar Python
en una aplicacion, o a traves de herramientas como SWIG, SIE

Universidad de Deusto

ESIDE

=

*M Caracteristicas de Python II

De scripting
= No tienes que declarar constantes y variables antes de utilizarlas
= No requiere paso de compilacion/linkage

= La primera vez que se ejecuta un script de Python se compila y
genera bytecode que es luego interpretado

= Alta velocidad de desarrollo y buen rendimiento

= Cddigo interoperable (como en Java "write once run everywhere")
= Se puede utilizar en multiples plataforma (mas aun que Java)
= Puedes incluso ejecutar Python dentro de una JVM (Jython)

= (Open source
= Razdn por la cual la Python Library sigue creciendo y creciendo
= De proposito general
= Puedes hacer en Python todo lo que puedes hacer con C# o Java, o
mas

| e o m
_:: b _'|' 1|_ a .
! B B . = L
= ot B L

Universidad de Deusto

ESIDE

=

&M Peculiaridades sintacticas

= Python usa tabulacion (o espaciado) para mostrar

estructura de bloques

= Tabula una vez para indicar comienzo de bloque
= Des-tabula para indicar el final del blogue

Codigo en C/Java Codigo en Python
1if (X)) { 1f x:
it (y) { if y:
f10; 10
} 20
20 ;
}

FEcinseE
[wlta] | B
Sl o,

ESIDE

=

Universidad de Deusto

Python vs. Perl

3

1
H T
a =S U R
L - B S
= e,

Los dos estan basados en un buen
entendimiento de las herramientas necesarias
para resolver problemas

= Perl esta basado en awk, sed, and shell scripting y

su mision es hacer las tareas de administradores de
sistemas mas sencillas

= Python esta basado e inspirando por OOP (Object-
oriented programming)

= Guido van Rossum diseno un lenguaje simple, poderoso, y
elegante orientado a la creacion de sistemas a partir de

componentes

Universidad de Deusto

=

ESIDE

*M Python vs. Java

= Java es un lenguaje de programacion muy completo
que ofrece:
= Amplio abanico de tipos de datos
= Soporte para threads
= Strong typing
* Y mucho mas ...
= Python es un lenguaje de scripting:
= No ofrece strong typing
= Bueno para prototipos pero malo para grandes sistemas
Puede cascar en tiempo de ejecucion
* Todo lo que puedes hacer con Java también lo puedes
hacer con Python

= Incluso puedes acceder a través de Python a las API de Java si
usas Jython (http://www.jython.org)

| e o m
_:: b _'|' 1|_ a .
! B B . = L
= ot B L

Universidad de Deusto

ESIDE

=h

w Python vs. Jython

. Python
= También llamado Cpython
= Implementacion del lenguaje Python en C

= Python C API permite extender Python con librerias
realizadas en C

= Partes que requieren mayor rendimiento en Python
estan implementadas en C o C++ y tan sdlo
contienen una pequena capa de Python encima

= Jython
= Implementacion de Python en Java
= Permite acceder a todas las APIs de Java
= P.E. Podemos producir Swing GUIs desde Python

Universidad de Deusto

ESIDE

=

¢Para qué [no] es util?

= Python no es el lenguaje perfecto, no es bueno para:

= Programacion de bajo nivel (system-programming), como
programauon de drivers y kernels

= Python es de demasiado alto nivel, no hay control directo sobre
memoria y otras tareas de bajo nivel

= Aplicaciones que requieren alta capacidad de computo
= No hay nada mejor para este tipo de aplicaciones que el viejo C

: Python es ideal:

Como lenguaje "pegamento” para combinar varios componentes
juntos

= Para llevar a cabo prototipos de sistema
= Para la elaboracion de aplicaciones cliente
= Para desarrollo web y de sistemas distribuidos

= Para el desarrollo de tareas cientificas, en los que hay que
simular y prototipar rapidamente

| H m
M==TaT=
et B b’ S R g .
o

Universidad de Deu
C ESI.DE '

*W Instalar Python

= Bajar version de Python de

http://www.python.org/download/

Para Windows ejecutar instalador
Para Linux, usar rpms disponibles en:

nttp://www.python.org/2.3.3/rpms.html
= rpm -1v
python2.3-2.3.3-pydotorg.1386.rpm

Universidad de Deusto

Usando Python desde linea
comando

ESIDE

=

= Para arrancar el intérprete (Python interactivo) ejecutar:

$ python
Python 2.3.3 (#1, Dec 30 2003, 08:29:25)

[GCC 3.3.1 (cygwing special)] on cygwin

Type "help", "copyright", "credits" or "license" for more
information.
>>>

= Un comando simple:
>>> print "Hola Mundo"
Hola Mundo
>>>
= Para salir del intérprete Ctrl-D (en Linux) o Ctrl-Z (en Linux) o:
>>> 1mport Sys
>>> sys.exi1t()

i -\-:-“$. m
Vo e | " 3

| ESIDE
i

e “Ejecutando programa
*M holamundo.py

= Python desde script:

= Guardar siguientes sentencias en fichero: holamundo. py

#!/usr/bin/env
python print "Hello world"

" Ejecutar el script desde linea de comando:

$ python helloworld.py
Hello world

=

Universidad de Deusto

ESIDE

&W Sentencias y blogues

Las sentencias acaban en nueva linea, no en ;

Los blogues son indicados por tabulacion que sigue a una sentencia
acabada en ':'. E.j. (bloque.py):

comentarios de linea se indican con caracter '#'
name = "Diegol" # asignacidén de valor a variable
1t name == "Diego":

print "Aupa Diego"
else:

print ";Quién eres?"

print "j{No eres Diego!"

$ python bloque.py
;Quién eres?
iNOo eres Diego!

Universidad de Deusto

=

ESIDE

&WM Identificadores

= | os identificadores sirven para nombrar variables,
funciones y modulos

= Deben empezar con un caracter no numeérico y contener
letras, nimerosy '_

= Python es case sensitive

= Palabras reservadas:

= and elif global or assert else if pass break
except import €r1nt class exec in raise
continue finally is return def for lambda try

del from not while

= Variables y funciones delimitadas por __ corresponden

a simbolos implicitamente definidos:
= _ name__ nombre de funcion
B doc__ documentacion sobre una funcion

"l s ® __1n1t__() constructor de una clase

Universidad de Deusto

=

ESIDE

*M Tipos de datos I

= Numeéricos (integer, long integer, floating-point, and
complex)

>>> X = 4

>>> 1nt (X)

4

>>> long(x)

4L

>>> float(x)

4.0

>>> complex (4, .2)
(4+0.273)

Universidad de Deusto

ESIDE

=

&MM Tipos de datos II

= Strings, delimitados por unparde (', " ,""")
= Dos string juntos sin delimitador se unen
>>> print "Hi" "there"

Hithere
= Los codigos de escape se expresan a través de '\":
>>>print '\n'
= Raw strings
>>> print r'\n\\' # no se 'escapa' \n
* Lomismo ' que ", p.e. "\\[foo\\]" r'\[foo\]'
= Algunos de los métodos que se pueden aplicar a un string son:
>>> len('La vida es mucho mejor con Python.')
>>> 34
>>> 'La vida es mucho mejor con Python.'.upper()
'"LA VIDA ES MUCHO MEJOR CON PYTHON'
>>> "La vida es mucho mejor con Python".find("Python")

27

>>> "La vida es mucho mejor con Python".find('Perl')

-1

>>> 'La vida es mucho mejor con Python'.replace('Python', 'Jython')

m_. 'La vida es mucho mejor con Jython' (™ python :
fa L ESINE = -

Universidad de Deusto

=
&W Tipos de datos III

= El modulo string de la Python library define

metodos para manipulacion de strings:
>>> import string

ESIDE

>>> sl = 'La vida es mejor con Python'
>>> string.find(sl, 'Python')
21
= '%' es el operador de formateo de cadenas:
>>> provincia = 'Araba'
>>> "La capital de %s es %s" % (provincia,
"Gasteiz")

'La capital de Araba es Gasteiz’

f} . " Los caracteres de formateo son los mismos que en C, p.e. d, iﬁmm

Universidad de Deusto

ESIDE

=

*W Tipos de datos IV

= Lijstas []
= Indexadas por un entero comienzan en O:
>>> meses = ["Enero", "Febrero"]
>>> print meses[0]
Enero

>>> meses.append('Marzo")
>>> print meses
["Enero', 'Febrero', 'Marzo']

= Dos puntos (:) es el operador de rodajas, permite trabajar con una
porIC|on de la lista, el elemento indicado por el segundo parametro no se
Incluye:

>>> print meses[1:2]
['Febrero']
= Mas (+) es el operador de concatenacion:
>>> print meses+meses
[Enero', '"Febrero', 'Marzo', 'Enero', 'Febrero'

)
f‘]@mmﬂarzo] L pytfion :
.::_ i B __|'1 f ._ ; .

Universidad de Deusto

ESIDE

=

Tipos de datos IV

= Las listas pueden contener cualquier tipo de objetos Python:
>>> meses.append (meses)
>>> print meses

['"Enero', 'Febrero', 'Marzo', ['Enero', 'Febrero', 'Marzo']]
>>> meses.append(1)
['"Enero', 'Febrero', 'Marzo', ['Enero', 'Febrero', 'Marzo'], 1]

= Para anadir un elemento a una lista:

>>> jtems = [4, 6]

>>> items.insert(0, -1)

>>> jtems

[-1, 4, 6]

= Para usar una lista como una pila, se pueden usar append y pop:
>>> items.append(555)

>>> jtems [-1, 4, 6, 555]

>>> jtems.pop()

=

Universidad de Deusto

ESIDE

&W Tipos de datos V

y £ print 'Nodo encontrado’

'guplas (), lo mismo que listas, pero no se pueden modificar, e.j. (1,

Diccionarios {} arrays asociativos 0 mapas, indexados por una clave, la
cuall puede ser cualquier objeto Python, aunque normalmente es una
tupla:

>>> mydict = {"altura” : "media"”, "habilidad"” : "intermedia",
"salario" : 1000 }

>>> print mydict

{altura': 'media', 'habilidad': 'intermedia', 'salario': 1000

>>> print mydict["habilidad"]
intermedia

= Puedes comprobar la existencia de una clave en un diccionario usando
as_key:
if mydict.has_key('altura'):

print 'Nodo encontrado’
= Lo mismo se podria hacer:
if 'altura' in mydict:

Universidad de Deusto

ESIDE

=

&W Control de flujo: condicionales

= E.j. (condicional.py)

q= 4
h =5
1if g < h :

print "primer test pasado”
else:

print "segundo test pasado”
>>> python condicional.py
primer test pasado

= Operadores booleanos: "or," "and," "not"
= Operadores relacionales: ==, >, <, =

Universidad de Deusto

=
&M Control de flujo: bucles

= for se utiliza para iterar sobre los miembros de una

secuencia

= Se puede usar sobre cualquier tipo de datos que sea una
secuencia (lista, tupla, diccionario)

= Ej. bucle.py
for x in range(1,5):
print x
$ python bucle.py
12 3 4

= |a funcion range crea una secuencia descrita por
([start,] end [,step]), donde los campos
start y step son opcionales. Start es 0y step

,l ... es1por defecto. '

ESIDE

Universidad de Deusto

ESIDE

=

*W Control de flujo: bucles

while es otra sentencia de repeticion. Ejecuta un bloque de
cddigo hasta que una condicidn es falsa.

" break nos sirve para salir de un bucle
= Por ejemplo:

reply = 'repite’
while reply == 'repite'
print 'Hola'

reply = raw_input('Introduce "repite" para
hacerlo de nuevo: ')

Hola

Introduce "repite"” para hacerlo de nuevo:
repite

_Hola -
mﬂfﬂétroduce "repite" para hacerlo de nuevo: aA'I'O-S' igred

Universidad de Deusto

ESIDE

=

*W Funciones

= Una funcidén se declara usando la palabra clave def

funcionsimple.py
def myfunc(a,b):
sum = a + b
return sum
print myfunc (5,6)
$ python funcionsimple.py
11
= A una funcion se le pueden asignar parametros por defecto:
funcionvaloresdefecto.py
def myfunc(a=4,b=6):
sum = a + b
return sum
print myfunc()
print myfunc(b=8) # a es 4, sobreescribir b a 8

$ python funcion.py
s, 10

| w] | 1!I

o’ Seme
L

= 19

Universidad de Deusto

ESIDE

=

Funciones

= Listas de argumentos y argumentos basados en palabras clave:
funcionargumentosvariablesyconclave.py

def testArgLists_1(*args, **kwargs):
print 'args:', args
print 'kwargs:', kwargs
testArgLists_1('aaa', 'bbb', argl='ccc', arg2="'ddd"')
def testArgLists_2(arg0, *args, **kwargs):
print 'arg0: "%s"' % arg0
print 'args:', args
print 'kwargs:', kwargs
print '=' * 40
testArgLists_2('un primer argumento', 'aaa', 'bbb', argl='ccc',
arg2="ddd")

= \fisualizaria:
args: ('aaa', 'bbb')
kwargs: {'argl': 'ccc',

arg0: "un primer argumento"
v args: ('aaa', 'bbb')

|] [] ==
[wlta] | B
Sl o,

= lwarAac: S V"aAarAal! -

L |
L

"'qaprAaDd ' TAHAAATD

ol of &

Universidad de Deusto

ESIDE

=

Clases

Una clase contiene una coleccion de métodos. Cada método contiene como primer
parametro (self) que hace referencia a un objeto

= self equivalente a this en C++
clasepinguinos.py
class PenguinPen:
def __init__(self):
self.penguinCount = 0
def add (self, number = 1):
""" Add penguins to the pen. The default number is 1 """
self.penguinCount = self.penguinCount + number
def remove (self, number = 1):
""" Remove one or more penguins from the pen
self.penguinCount = self.penguinCount - number
def population (self):
""" How many penguins in the pen? """
return self.penguinCount

penguinPen = PenguinPen()
penguinPen.add(5) # Tux y su familia
print penguinPen.population()

) E$python PenguinPen.py
I; o

Universidad de Deusto

ESIDE

=

Mas clases

clasesherencia.py
class Basic:
def __init__(self, name):
self.name = name
def show(self):
print 'Basic -- name: %s' % self.name
class Special(Basic): # entre paréntesis la clase base
def __init__(self, name, edible):
Basic.__init__(self, name) # se usa Basic para referir a
self.upper = name.upper() # clase base
self.edible = edible
def show(self):
Basic.show(self)
print 'Special -- upper name: %s.
if self.edible:
print "It's edible.”
else:
print "It's not edible."

mﬁﬁgef edible(self):
= = raturn <elf edible

% self.upper,

Universidad de Deusto

=

ESIDE

Probando clases

0 = Basic('Manzana')
objl.show()

print '=' * 30

obj2 = Special('Naranja', 1)
obj2.show()

= \isualizaria:
Basic -- name: Manhzanha

Basic -- name: Naranja
Special -- upper name: NARANJA. It's edible.

Universidad de Deusto

ESIDE

=

*W Excepciones

Cada vez que un error ocurre se lanza una excepcion, visualizandose
un extracto de la pila del sistema. E.j. excepcion.py:

#!/usr/bin/python

print a

$ print exception.py

Traceback (innermost last): File "exception.py", line 2, 1in
? print a NameError: a

= Para capturar la excepcién se usa except:

try:

fh=open("new.txt", "r")
except IOError, e:

print e

$ python excepcion.py
[Errno 2] No such file or directory: 'new.txt'

= Puedes lanzar tu propia excepcion usando el comando raise:

“¥fe raise MyException python: }

oA rv1can CvvetFoamCva +FMadilrlac

Universidad de Deusto

ESIDE

=

Excepciones personalizadas

excepcionpersonalizada.py
class E(RuntimeError):
def __init__(self, msqg):
self.msg = msg
def getMsg(self):
return self.msg
try:
raise E('mi mensaje de error')
except E, obj:
print 'Msg:', obj.getMsg()

" Visualizaria:
Msg: mi1 mensaje de error

=

ESIDE

Universidad de Deusto

&M Mddulos

[|
i

- T T

|] [] ==
[wlta] | B
o e

Un mddulo es una coleccion de métodos en un fichero que
acaba en |:>y El nombre del fichero determina el nombre del
modulo en la mayoria de los casos.
E.j. modulo.py:
def one(a):
print "1n one"
def two (c):
print "in two"
Uso de un maddulo:
>>> 1mport modulo
>>> dir(modu1o) # 1ista contenidos médulo
[' bu11t1ns , '_doc__"', '__file__', '"_name__

'one', 'two']
>>> modulo.one(2)
in one

Universidad de Deusto

ESIDE

=

&W Mddulos II

= import hace que un modulo y su contenido sean
disponibles para su uso.

= Algunas formas de uso son:
import test
= Importa modulo test. Referir a x en test con "test.x".
from test import x
= Importa x de test. Referir a x en test con "x".
from test import *
= Importa todos los objetos de test. Referir a x en test

con "x".
import test as theTest

= Importa test; lo hace disponible como theTest. Referir
a objecto x como "theTest.x".

| e e m
_:: = _'|' 1._ a .
w]|] g g "
= ot B L

Universidad de Deusto

ESIDE

=

Paquetes I

= Un paquete es una manera de organizar un conjunto de
modulos como una unidad. Los paquetes pueden a su vez
contener otros paquetes.

= Para aprender como crear un paquete consideremos el
siguiente contenido de un paquete:

package_example/
package_example/__init__.py
package_example/modulel.py
package_example/module2.py

= Y estos serian sus contenidos:
__1nit__.py
Exponer definiciones de modulos en este paquete.
from modulel import classl
from module2 import class?2

Universidad de Deusto

% .

ESIDE

Paquetes 11

modulel.py
class classl:
def __1init__(self):
self.description = 'class #1'
def show(self):
print self.description

module?2.py
class class?2:
def __init__(self):
self.description = 'class #2'
def show(self):
print self.description

Universidad de Deusto

ESIDE

=

Paquetes III

testpackage.py

import package_example

cl = package_example.classl1l()
cl.show()

c2 = package_example.class2()
c2.show()

= \Visualizaria:

class #1

class #2

= La localizacion de los paquetes debe especificarse o bien a
traves de la variable de entorno PYTHONPATH o en codigo del
script mediante sys.path

- T T

) ESIDE

S
]

Universidad de Deusto

ESIDE

=

&W Paquetes IV

= Como en Java el codigo de un paquete puede recogerse en un .zip:

>>> import zipfile

>>> a=zipfile.PyzipFile('mipackage.zip', 'w', zipfile.ZIP_DEFLATED)
>>> a.writepy('package_example')

>>> a.close()

>>> AZ

= Luego lo puedes importar y usar insertando su path en sys.path o

alternativamente anadiendo a la variable de entorno PYTHONPATH una
referencia al nuevo .zip creado:

$ mkdir prueba; cp mipackage.zip prueba
$ export PYTHONPATH=/home/dipina/examples/prueba/mipackage.zip

>>> import sys # esta y la siguiente no hacen falta si se ha
inicializado PYTHONPATH

>>> sys.path.insert(0, '/home/dipina/examples/prueba/mipackage.zip')
>>> import package_example

>>> classl = package_example.modulel.class1()
>>> classl.show()

1ass #1

.,-\.-\. -k

5 - AZ

Universidad de Deusto

ESIDE

=

&M Manejo de ficheros

®* Leer un fichero (Teerfichero.py)

fh = open("holamundo.py") # open crea un objeto de tipo fichero

for 1ine in fh.readlines() : # lee todas las lineas en un fichero
print line,

fh.close()

$ python leerfichero.py

#!/usr/bin/python

print "Hola mundo"

= Escribir un fichero (escribirfichero.py)

fh = open("out.txt", "w'")

fh.write ("estamos escribiendo ...\n")
fh.close()

$ python escribirfichero.py

$ cat out.txt

Universidad de Deusto

ESIDE

=

&M Mas sobre print

= print (printredirect.py)
= stdout enPythones sys.stdout, stdin es sys.stdin:

import sys
class PrintRedirect:
def __init__(self, filename):
self.filename = filename
def write(self, msqg):
f = file(self.filename, 'a')
f.write(msg)
f.close()
sys.stdout = PrintRedirect('tmp.log"')
print 'Log message #1'
print 'Log message #2'
print 'Log message #3'

Universidad de Deusto

ESIDE

=

&W Variables globales en Python

= Usar identificador global para referirse a variable global:
variableglobal.py
NAME = "Manzana"
def show_global():

hame = NAME

print '(show_global) nombre: %s' % name
def set_global():

global NAME

NAME "Naranja'

name = NAME

print '(set_global) nombre: %s' % name
show_global ()
set_global()
show_global ()

= |o cual visualizaria:
(show_global) nombre: Manzana
(set_global) nombre: Naranja

(show_aglobal) nombre: Naranija

Universidad de Deusto

ESIDE

=

*M Serializacidon de objetos

PickT1e: Python Object Serialization
= El moédulo pickle implementa un algoritmo para la serializacion y
deserializacion de objetos Python

= Para serializar una jerarquia de objetos, creas un Pickler, y luego
llamas al método dump ()

= Para deserializar creas un Unpickler e invocas su método Toad ()
method.
= El mdédulo shelve define diccionarios persistentes, las claves
tienen que ser strings mientras que los valores pueden ser
cualquier objeto que se puede serializar con pickle

import shelve

d = shelve.open(filename) # abre un fichero
dlkey] = data # guarda un valor bajo key
data = d[key] # lo recupera

del d[key] # To borra

Universidad de Deusto

Programacion de BD en

&W Python

Lo que es JDBC en Java es DB API en Python
= Informacion detallada en: http://www.python.org/topics/database/

= Para conectarnos a una base de datos usamos el método connect del
modulo de base de datos utilizado que devuelve un objeto de tipo
conection

= El objeto connection tiene el método cursor() que sirve para
recuperar un cursor de la BD

= Otros métodos definidos en connection son close(), commit(),
rol1back(), cursor()

= El objeto cursor define entre otros los siguientes métodos:
= execute() nos permite enviar una sentencia SQL a la BD
= fetchone() recuperar una fila

= fetchall() recuperar todas las filas

= Hay varios modulos que implementan el estandar DB-API:
= DCOracle (http://www.zope.org/Products/DCOracle/) creado por Zope
= MySQLdb (http://sourceforge.net/projects/mysqgl-python)

" MySQL-python.exe-0.9.2.win32-py2.3.exe para Windows

= MySQL-python-0.9.2-1.386.rpm para Linux .m
= Ftc C DOWeret

ESIDE

=

Universidad de Deusto

ESIDE

Ejemplo programacion BD en
Python con MySQL I

Creamos una base de datos de nombre deusto a la que podemos hacer login con
usuario deusto y password deusto, a traves del siguiente SQL:

=

CREATE DATABASE deusto;

GRANT ALTER, SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
ON deusto.*

TO deusto@'%'

IDENTIFIED BY 'deusto';

GRANT ALTER, SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
ON deusto.*

TO deusto@localhost

IDENTIFIED BY 'deusto';

Use deusto;

CREATE TABLE EVENTOS(ID int(1ll) NOT NULL PRIMARY KEY,

NOMBRE VARCHAR(250), LOCALIZACION VARCHAR(250), FECHA bigint(20),
DESCRIPCION VARCHAR(250));

[™

(#INSERT INTO EVENTOS VALUES (0, 'SEMANA ESIDE', 'esIDE-DEUSTO ' WOEILIEN

% 'cCharla sobre Python');

"“Ejemplo programacién BD en
ﬂw Python con MySQL II

db/accesodbeventos.py
import MysSQLdb, time, string, _mysql, _mysql_exceptions
def executesqQLCommand(cursor, command):
result = ""
command = string.strip(command)
if lTen(command) :
try:
cursor.execute(command) # Ejecuta el comando
if string.lower(command).startswith('select'):
s1 es una select ...
Tines = cursor.fetchall() # recuperar todos los

=

resultados
for T1ine in lines:
for column in Tine:
if column == None:
result = result + 'null '
else:
result = result + str(column) + " '
result = result + '\n'
except _mysql_exceptions.ProgrammingError, e:

- ESIOE sys.exit()

“Ejemplo programacion BD en
ﬂw Python con MySQL IIL

ESIDE

=

__name__ == "__main__
db= MySQLdb.connect(host—"1oca1host",user—"deusto", passwd="deusto",
db="deusto")

cursor = db.cursor()

executesQLCommand(cursor, "update eventos set fecha=" + str(time.time
(O *1000))

results = executesQLCommand(cursor, "select * from eventos")

print results

print results.split() # crear una lista y la visualiza

del cursor

= Visualizando lo siguiente:

$ python accesodbeventos.py
O SEMANA ESIDE ESIDE-DEUSTO 1078901556610 Charla sobre Python

['O', '"SEMANA', 'ESIDE', 'ESIDE-DEUSTO', '1078901556610', 'Charla',
'sobre', 'Python']

=

Universidad de Deusto

ESIDE

Programacion de expresiones
regulares I

- T T

ESIGE
o

= Através del modulo re, Python permite el uso de expresiones
regulares similares a como se hace en Perl (una razén mas para
moverse de Perl a Python)

regex/procesaurlConRe.py
import re, urllib, sys
if 1en(sys argv) <= 4:
print "Usage: procesaurl <url-a-procesar> <pa1abra a-
reemplazar> <nueva-palabra> <fichero-html-a-crear>'
sys.ex1t(0)
print sys.argv[1]

= (urllib.urlopen(sys.argv[1l])).read() # Tee el contenido de
una url

reemplaza todas las ocurrencias de "Artaza" por "artaza"
t = re.sub(sys.argv[2], sys.argv[3], s)

backupFile = open(sys.argv[4], "w")

backupFile.write(t)

backupFile.close()

print 'Fichero ' + sys.argv[4] + ' escrito con contenido de
url: ' + sys.argv[1l] + ' al reemplazar palabra ' + s
[2] + " con palabra ' + sys.argv[3]

=

Universidad de Deusto

ESIDE

Programacion de expresiones
regulares II

conseguir el titulo del documento HTML

tmatch = re.search(r'<title>(.*?)</title>"', s, re.IGNORECASE)
if tmatch:

title = tmatch.group(l)
print 'Titulo de pagina ' + sys.argv[l] + ' es: ' + title

extraer lista de enlaces url:

pat = re.compile(r'Chttp://[\w-1*[.\w-]+)")
addrs = re.findall(pat, s)

print 'La Tista de enlaces encontrados en esta pagina es: '
for enlace in addrs:
print enlace

Universidad de Deusto

ESIDE

=

Programacion de sistemas

= Por poder se puede incluso llevar a cabo la programacion de
sistemas en Python: programacion de API de Windows (
http://www.python.org/windows/index.nhtml) y UNIX (modulo
oS
= El modulo os nos da acceso a:
= El entorno del proceso: getcwd(), getgid(), getpid()

= Creacion de ficheros y descriptores: close(), dup(), dup2(),
fstat(), open(), pipe(), stat(), socket()

= Gestion de procesos: execle(), execv(), kil1(Q), fork(Q,
system()

= Gestion de memoria mmap ()

= El modulo threading permite la creacion de threads en
Python

= Siguiente transparencia muestra como usar modulo
threading para recuperar el contenido de varias urls

':_1:-.I|'1!| R - - "

o’ Seme
L

Universidad de Deusto

ESIDE

=

*ﬁ% Ejemplo threads

#!/usr/bin/env python
import threading # threading/ejemplothreading.py
import urllib
class FetchurlThread(threading.Thread):
def __init__(self, url, filename):
threading.Thread.__init__(self)
self.url = url
self.filename = filename
def run(self):
print self.getName(), "Fetching ", self.url
f = open(self.getName()+self.filename, "w")
content = urllib.urlopen(self.url).read()
f.write(content)
f.close()
print self.getName(), "Saved in ", (self.getName()+self.filename)
urls = [("http://www.python.org', 'index.html'),
('http://paginaspersonales.deusto.es/dipina', 'index.html')]
Recuperar el contenido de Tas urls en diferentes threads
for url, file in urls:
t = FetchurlThread(url, file)

SIOE t.start(Q) .m

Universidad de Deusto

ESIDE

=

Programacion de CGIs

= Pasos para desarrollar CGIs en Python:

= Instalar Apache 2.0, disponible en:
http://httpd.apache.org/download.cqi

= Instalar mod_python 3.1.2b:
http://httpd.apache.org/modules/python-download.cgi

= Configurar Apache anadiendo a httpd.conf las siguientes lineas,
para dar soporte a CGIs en Python y PSPs (Python Server Pages):
<Directory "<dir-donde-guardar-python-scripts>">
AddHandTer mod_python .py
PythonHandler mod_python.publisher
PythonDebug On
</Directory>

<Directory "<dir-donde-guardar-paginas-psp>">
AddHandler mod_python .psp
PythonHandler mod_python.psp
PythonDebug On

</Directory>

= Usar el médulo cgi de la Python Library para/}arogramar y

seguir documentacion de mod_python (http: -
www.modpython.org/live/current/doc-html/) .m

Universidad de Deusto

ESIDE

=

Ejemplo CGI I

cgi-bin/python/holamundo.py

metodos de ayuda del CGI

def _formatAsHTML(req, content):
req.content_type = "text/html"

return "<html><head><title>Hola Mundo Python
CGI</title></head><body><hl1>Ejemplo Python de CGI</hl><p>" +
content + "</p></body></html>"

def _usage():

return "Uso: Debes especificar un parametro de nombre ‘quien’,
para saber a quien saludar, e.j: http://localhost:8080/cgi-
bin/python/holamundo.py/diHola?quien=Diego"

Universidad de Deusto

ESIDE

=

Ejemplo CGI II

unico método publico que se puede invocar al que hay que pasar
obligatoriamente un parametro

def diHola(req, quien=""):
if not quien:
return _formatAsHTML(req, _usage())
return _formatAsHTML(req, "jHola " + quien + "!")

si no se especifica un metodo en la url se invoca index por defecto,
es decir http://localhost:8080/cgi-bin/python/holamundo.py
def index(req, **params):
paramsPassedstr = ""
if params:
for param in params:
paramsPassedstr += (param + "\n'")

return formatAsHTML(req, ”Un1co metodo pub11co en CGI es
diHola
p me i + I msPa + "
" + _usage
()) B Hala sanda #ytham Lis r.l.,ml-:. Qucnid 16 2 e | [
A Eat vl So Baowrens ook Wiwke -ep Odig @8
'..-ﬂ [R TS [ar=——r [cNhaT BV ek b gy tan T clannseda. sy IHc T ben Do | Sdaeh g
-::H:rl'l: JEn-alhr.'rc- m::]u:[q':.:tc:mn.u: .

Liﬂ% b eEL.. |7 Ham Fundn tiea S0
Ejemple Pylhon de CGL

ool T D!

ESIE

o]

I = einges T | WMUEVFC Y

Universidad de Deusto

ﬂﬂw LCE Sentlent Library

L.CF Sentient Library Catalig Funclions:

o Ulreate neebeels rategesy

.; _.j [T 1 H) .A =1 1F P-n- R N T i T LN B L Tt by L PR o T bl RN Ll L R _.11_. -l 4H-

o3 Bueer nes hnals dctailz

Famnk [*11 15371 helamgi me e cabepoury . LCE=LIERARY deazils:

oo Bl Dk deipils pnalior Beigl THLEE) Tide= The e agrenning | angage
o . : Authers __I:ljan_u:bE:ru;Em_ R i AT T R i
I Liner e shed] Uelils ek o
oo Rdic shedr deails andfor Mine TRITrag IPublis he Acllisen Wesler
______________________ TS ER e S S AR e B S R R T
Tl Torses T Criega
ﬂ Cymrion Ly Lilamy Lopoz e (péfl (L33 [dmene cam acply Aleners Ltz

Bk ¢/ LL15377) LOECUTTOM dedzaile

AR LS

The bk wus lasisesn alshell hesile Deso's rompuisr
in o< LI bes iile biscks: | 'ragraruming Yebi e
jete will Javy, Pesipgn Latlerny Plenents ol
Pepsaale Chjecl risnlec Sl vere | on Vs Mue T
111733 =00l

!
%
¥
ol

LB

gl

FETRLLLEE:

-]
=
&
2
8
5
o
¥
=

Ay pue

Universidad de Deusto

ESIDE

=

Ejemplo PSP

Python Server Pages es la version Python de JSPs o ASPs
= Permite la insercidén de codigo Python en un documento HTML
= Usa los mismos cddigos de escape que los JSPs

= Se permite su uso a través de mod_python de Apache

* http://www.onlamp.com/pub/a/python/2004/02/26/python_server_pages.htm
I

<!- cgi-bin/psp/holamundo.psp -->
<html>
<%
if form.has_key("'nombre'):

saludo = 'Hola, %s!' % form['nombre'].capitalize()
else:

saludo = 'Hola mundo!'
end
%>

<h1><%= saludo %></h1>

<p>Usa parametro 'nombre' para recibir un saludo, e.g.
holamundo. psp?nombre=Diego</p>

</html>

BV pamiln sovum 0 i PHOS | 2UMLH]

Lie e .H.'I lrRlmadis maw dlrlrl'n' Fr l1=kie !'|

q.'ﬂ fﬂ '-hi Irﬂp pu 41 I'.:.st :J]E:l.-gl-hn,|.5-|:1|:hri.n:l-:;|:.s-prrr:l I:rt-"'egr.{-| "] um
J4 ~gre “Ecnimeni - Toaiors © Lsbet Euld: '
o BLEAE e ~ PO | e looalGremcies | o

Holu. Diego! I puchon:

O E A = Fiie e

Universidad de Deusto

ESIDE

=

&W Programacion en XML con SAX

" Soporte para SAX en Python es ofrecido por el
modulo xm1.sax de la Python Library

= Define 2 métodos:
» make_parser([parser_list])
= Crea y devuelve un objeto SAX XMLReader object

= parse(filename_or_stream, handler[,
error_handler])

= Crea un parser SAX parser y lo usa para procesar el
documento a traves de un handler

= El mddulo xm1.sax.xmlreader define readers
para SAX

= El médulo xm1.sax.handler define manejadores
de eventos para SAX: startDocument,
endDocument, starkElement, endElement grErm

Universidad de Deusto

ESIDE

=

Ejemplo procesamiento SAX I

xml/ElementCounterSAX.py

Ejecutar: python ElementCounterSAX.py Cartelera.xml
import sys

from xml.sax import make_parser, handler

class ElementCounter(handler.ContentHandler):

def __init__(self):
self._elems = 0
self._attrs = 0
self._elem_types = {}
self._attr_types = {}

def starteElement(self, name, attrs):
self._elems = self._elems + 1
self._attrs = self._attrs + len(attrs)
self._elem_types[name] = self._elem_types.get(name, 0) + 1
for name in attrs.keys():

m self._attr_types[name] = se11:._attr_types.get(namel Oi + 1

Universidad de Deusto

ESIDE

=

Ejemplo procesamiento SAX II

def endbDocument(self):

print "There were", self._elems, "elements."
print "There were", self._attrs, "attributes."

print "---ELEMENT TYPES"
for pair in self._elem_types.items():
print "%20s %d" % pair

print "---ATTRIBUTE TYPES"
for pair in self._attr_types.items():
print "%20s %d" % pair

parser = make_parser()
parser.setContentHandler(ElementCounter())
parser.parse(sys.argv[1l])

Universidad de Deusto

=

ESIDE

&M Procesando XML con DOM

= Python provee el médulo xm1.dom.minidom que es
una implementacion sencilla de DOM

= E
0

C

meétodo parse a partir de un fichero crea un
bjeto DOM, el cual tiene todos los métodos y

atributos estandar de DOM: hascChildNodes (),

n1 1dNodes, getElementsByTagName ()

= Para mas informacion sobre procesamiento XML en
Python ir a: http://pyxml.sourceforge.net/topics/
= La distribucion PyXML, que no viene en la distribucion por

FEcinseE
[wlta] | B
Sl o,

defecto de Python, permite procesamiento un poco mas
sofisticado

* http://pyxml.sourceforge.net/topics/

Universidad de Deusto

ESIDE

=

Ejemplo DOM I

xml/ejemploDOM. py
Ejecutar: python ejemploDOM.py Cartelera.xml

#!/usr/bin/env python

import xml.dom.minidom, sys

class Pelicula:

def __init__(self, codigo, titulo, director, actores):

self.codigo = codigo
self.titulo = titulo
self.director = director
self.actores = actores

def __repr__(self):

return "Codigo: " + str(self.codigo) + " - titulo: " +

self.titulo + " - director: " + self.director + " - actores: " +
self.actores

class PeliculabDOMParser:
def __init__(self, filename):
self.dom = xml.dom.minidom.parse(filename)

‘}_. self.peliculas = []

Universidad de Deusto

ESIDE

=

*M Ejemplo DOM II

def getPeliculas(self):
if not self.peliculas:

peliculaNodes = self.dom.getElementsByTagName("Pelicula")

numPelis = len(peliculaNodes)

for i in range(numPelis):
pelicula = peliculaNodes.item(i)
Recuperar los attributes de cada nodo Pelicula
peliAttribs = pelicula.attributes
codigo = peliAttribs.getNamedItem("codigo") .nodevalue
titulo = peliAttribs.getNamedItem("titulo") .nodevalue
director = peliAttribs.getNamedIitem("director") .nodevalue
actores = peliAttribs.getNamedIitem("actores") .nodevalue

self.peliculas.append(Pelicula
(codigo,titulo,director,actores))

return self.peliculas

if __name__ == '__main__":
domParser = PeliculabDOMParser(sys.argv[1l])
for peli in domParser.getPeliculas():
print peli

S e ke

ESIGE
o

[k
L

Universidad de Deusto

ESIDE

Programacion distribuida:
CORBA con omniORBpy

= Desde Python se puede usar tanto CORBA (omniORBpy) como
servicios web (SOAPpy disponible en
http://pywebsvcs.sourceforge.net/)

= En este curso nos concentramos solo en CORBA:

= Download omniORBpy de: http://omniorb.sourceforge.net/
= Desarrollada por Duncan Grisby en AT&T Labs Cambridge
= Basada en la ORB para C++: omniORB
= Descomprimir y compilar en Linux o simplemente descomprimir en
Windows
= Las siguientes variables de entorno son necesarias:

= PYTHONPATH=<omniORBpy-install-dir>/11b/python;
<omniORBpy-install-dir>\1Ti1b\x86_win32

= PATH=$PATH:=<omniORBpy-install-dir>/bin/x86_win32
= LD_LIBRARY_PATH=<omniORBpy-install-
dir>\Tib\<platform>

= Para compilar IDL usar: omniidl -bpython <fichero-idl-a-
compilar>

=

Universidad de Deusto

ESIDE

=

Ejemplo CORBA: IDL

// corba/example_echo.idl
module Example {
interface Echo {
string echoString(in string mesg);
}s
s

Universidad de Deusto

ESIDE

&W Ejemplo CORBA: servidor

#!/usr/bin/env python

import sysfrom omniORB import CORBA, PortableServer

Import the stubs and skeletons for the Example module

import Example, Example__POA

Define an implementation of the Echo interface

class Echo_i (Example__POA.Echo):

def echoString(self, mesg):

print "echoString() called with message:", mesg
return mesg

Initialise the ORB

orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)

Find the root POA

poa = orb.resolve_initial_references("RootPOA")

Create an 1instance of Echo_ie

i = Echo_i()# Create an object reference, and implicitly activate the objecte

o =ei._thisQ

Print out the IOR

print orb.object_to_string(eo)

Activate the POA

poaManager = poa._get_the_POAManager()

poaManager.activate()

Everything is running now, but if this thread drops out of the end

of the file, the process will exit. orb.run() just blocks until the

ORB is shut down

orb.run()

25 et i s

[|
i |

Universidad de Deusto

ESIDE

=

*ﬁ% Ejemplo CORBA: servidor

#!/usr/bin/env pythonimport sys
Import the CORBA module
from omniORB import CORBA
Import the stubs for the Example module
import Example
Initialise the ORB
orb = CORBA.ORB_init(sys.argv, CORBA.ORB_ID)
Get the IOR of an Echo object from the command 1line (without
checking that the arguments are sensible!)
ior = sys.argv[1]
Convert the IOR to an object reference
obj = orb.string_to_object(ior)
Narrow reference to an Example::Echo objecte
o = obj._narrow(Example.Echo)
if eo is None:
print "Object reference is not an Example::Echo"
sys.exit(1l)
Invoke the echoString operation
message = "Hello from Python"
result = eo.echoString(message)
print "I said '%s'. The object said '%s'." % (message,resu1'm_

Universidad de Deusto

ESIDE

=

*M Programacion de GUIs I

= Tkinter es la GUI toolkit que por defecto viene con
Python (http://www.python.org/doc/current/lib/module-
Tkinter.html)

= Basada en Tcl/tk, no tiene apariencia nativa
= Es lenta pero su uso es muy sencillo
= Pmw (Python meta widgets) (http://pmw.sourceforge.net/)
= Componentes mas elaborados encima de Tkinter
= Existen otras toolkits para generacion de GUISs:

= wxPython (http://www.wxpython.org/)
= Apariencia nativa, basado en wxWindows (multiplaforma), muy
rapida
= Pythonwin (http://www.python.org/windows/pythonwin/)
= Solamente para Windows, usa directamente la API de Windows
= PyGTK (http://www.pygtk.org/)

= PyQt (http://www.riverbankcomputing.co.uk/pyqt/)

Universidad de Deusto

ESIDE

Ejemplo Tkinter I

gui/tkinterwatch.py

from Tkinter import

e
=

import time, sys

class Stopwatch(Frame) :

def

def

def

def

Implements a stop watch frame widget.

__init__(self, parent=None, **kw):
Frame.__init__(self, parent, kw)
self._start = 0.0
self._elapsedtime = 0.0
self._running = 0

self.timestr = Stringvar()
self.makewidgets()

makewidgets(self):

""" Make the time Tabel. """

1 = Label(self, textvariable=self.timestr)
self._setTime(self._elapsedtime)
T1.pack(fill=X, expand=NO, pady=2, padx=2)

_update(self):

""" Update the label with elapsed time.
self._elapsedtime = time.time() - self._start
self._setTime(self._elapsedtime)

self._timer = self.after(50, self._update)

_setTime(self, elap):

""" Set the time string to Minutes:Seconds:Hundreths
minutes = int(elap/60)

seconds = int(elap - minutes*60.0)

hseconds = int((elap - minutes*60.0 - seconds)*100)
self.timestr.set('%02d:%02d:%02d' % (minutes, seconds, hseconds))

Start

Q0 Ed a5
Feset Gt

=top

Universidad de Deusto

ESIDE

ﬁm Ejemplo Tkinter II

def start(self):
""" start the stopwatch, ignore if running.
if not self._running:
self._start = time.time() - self._elapsedtime
self._update()
self._running = 1

Q0 Ed a5
Feset Gt

Start

=top

def Stop(self):
""" Sstop the stopwatch, ignore if stopped.
if self._running:
self.after_cancel(self._timer)
self._elapsedtime = time.time() - self._start
self._setTime(self._elapsedtime)
self._running = 0

def Reset(self):
""" Reset the stopwatch.
self._start = time.time()
self._elapsedtime = 0.0
self._setTime(self._elapsedtime)

if __name__ == '_main__"': root = TkQ
sw = Stopwatch(root)
sw.pack(side=TOP)
Button(root, text='Start', command=sw.Start).pack(side=LEFT)
Button(root, text='Stop', command=sw.Stop).pack(side=LEFT)
Button(root, text='Reset', command=sw.Reset).pack(side=LEFT)
Button(root, text='Quit', command=sys.exit(0)).pack(side=LEFT)

root.mainToop()
e o
ke ESIDE
LR

Universidad de Deusto

ESIDE

ﬁ Ejemplo de GUI con Pmw

™ TE P

LT (I TR o I T (RS A

EEE]

TSy iuw

Help |

il Fzede |olaraner] Daae e e

- -

v sy Sislen el |||::|. DRI (e

LaorenErine

|
7R 2znden

reotCz - 23349 Soteaw Ergnaciry
peal oo - s et e e
ot 0= 234 Raruzls
reot__—_ W Ll ke et vz

171 il = Tow S== oy wemmion: - #mz
1252 Zleoh Covlees amd Fyste nz
171202 = Frogiarivg |z Ui eyl sy
1°1-4 2 gar-aesdoc Do s Pracsss
I 1240 = legzfta: Ae ovel [=torg ol
1
I
1
I
1

T1=4e Al e Seal =iy ol
12412 = 2 Jr wehF 2eErat 2ta Aol

"1 d== " ezhene Filg Ze=izn | aml
12712 = _ILE e Z2 rwers

B . -

i carnwl aleerinla

roaika Cshel oy

" eshe HIFsods

IRIF: e Bz Ay

= 3|

1*0‘{

A N R TTEEY

T Seeew Sy el S2-0 CRANY

T T el [y |"|'.l',|'w||" (e e el] = S0k e

Az |-'r.'|;|'.'.rn"rr_. In e meclwnid =08 A2

ArAne [e e

g f134.

Moz [5" 5wk

ZHY |I EFErT r’2 1

HaToeess By [riee

Luizalize {3 e Zoepts zena e oo L

[T

vea e oaeijes |

ATE = |FIITE

L] P I EERCRPT H G £ H B ET HL T IR L T TEPA

LT 5 R T Bl T

[HH O |G H

[

Cujuu | i1 T g,

e
ErL N

Universidad de Deusto

ESIDE

=

w Ejemplo wxPython I

B Hola, semaneros ESIDE]

#!/usr/bin/env python o
gui/wxPythonSemanaESIDE.py t_ b E _
__author__ = "Diego Ipifia <dipina@eside.deusto.es>' Ve

import wx

class Frame(wx.Frame):
"""Clase frame que visualiza una imagen."""

def __init__(self, image, parent=None, 1id=-1,

pos=wx.DefaultPosition, title='jHola, semaneros
ESIDE!'):

"""Crea un Frame y visualiza imagen."""

temp = image.ConvertToBitmap()

size = temp.Getwidth(), temp.GetHeight()
wx.Frame.__init__(self, parent, id, title, pos, size)

self.bmp = wx.StaticBitmap(parent=self, id=-1,
bitmap=temp)

Universidad de Deusto

ESIDE

=

&W Ejemplo wxPython II

class App(wx.App):
"""Clase aplicacién."""

def onInit(self):
wx.InitAllImageHandlers()
image = wx.Image('semanaeside.jpg', wx.BITMAP_TYPE_JPEG)
self.frame = Frame(image)
self.frame.Show()
self.SetTopwindow(self.frame)
return True

def main():
app = AppQ)
app.-MainLoop()

if _name__ == '"__main__":
main()

= A traves del programa wxPython\demo\demo. py se pueden ver demos de

todas las capacidades de wxPython y lo que es mas importante vienen
m : acompanadas de codigo fuente L python : Y

Universidad de Deusto

=
*W Un poco de Jython

Download Jython de:
= http://www.jython.org/download.html

= Para instalar simplemente ejecutar: java jython-21
= Usa Lift-Off Java-Installer: http://liftoff.sourceforge.net/

= Algunos ejemplos de Jython en:
= http://www.jython.org/applets/index.html

= Documentacion basica sobre Jython disponible en:
= http://www.jython.org/docs/usejava.htmi

ESIDE

25 et i s

Universidad de Deusto

ESIDE

=

Ejemplo Jython: ButtonDemo

http://www.jython.org/applets/button.html
from java import awt, applet
class ButtonDemo(applet.Applet):

def init(self):

self.bl = awt.Button('Disable middle button',
actionPerformed=self.disable)

self.b2 = awt.Button('Middle button')

self.b3 = awt.Button('Enable middle button', enabled=0,
actionPerformed=self.enable)

self.add(self.bl)
self.add(self.b2)
self.add(self.b3)

def enable(self, event):

self.bl.enabled = self.b2.enabled =1
self.b3.enabled = 0
def disable(self, event):
self.bl.enabled = self.b2.enabled = 0
] self.b3.enabled = 1 3

Universidad de Deusto

ESIDE

=

&M Casos de éxito de Python

= BitTorrent (http://bitconjurer.org/BitTorrent/), sistema P2P que
ofrece mayor rendimiento que eMule

= PyGlobus, permite la programacion de Grid Computing (http://
www-itg. Ibl. gov/gtg/projects/pyGlobus/)

= ZOPE (www.zope.org) es un servidor de aplicaciones para
construir y gestionar contenido, intranets, portales, y
aplicaciones propietarias

= Industrial Light & Magic usa Python en el proceso de
produccion de graficos por ordenador

= Google usa Python internamente, lo mismo que Yahoo para su
sitio para grupos

= Red Hat Linux utiliza Python para la instalacion, configuracion,
y gestion de paquetes.

= Mas historias de éxito de Python en: http://pbf.strakt.com/
success

Universidad de Deusto

=

ESIDE

Recursos utilizados

Compilador de Python 2.3.3 y documentacion:

= http://www.python.org/2.3.3/

Extensiones para Windows:

= https://sourceforge.net/projects/pywin32/

Mddulo de bases de datos MySQLdb 0.9.2:

= http://sourceforge.net/projects/mysql-python

Base de datos MySQL 4.0:

= http://www.mysql.com/downloads/mysql-4.0.html
omniORBpy

= http://omniorb.sourceforge.net/

Servidor Apache 2.0 (http://httpd.apache.org/)

= Modulo mod_python para Apache: http://www.modpython.org
wxPython 2.4:

= http://www.wxpython.org/download.php#binaries
Jython 2.1

= http://www.jython.org/download.html L python: §

= .‘.-:....: __-':_"_.,:.' T

