
Python Library Reference

3.1 sys -- System-specific parameters and
functions
This module provides access to some variables used or maintained by the interpreter and to functions that
interact strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python script. argv[0] is the script name (it is
operating system dependent whether this is a full pathname or not). If the command was executed
using the -c command line option to the interpreter, argv[0] is set to the string '-c'. If no script
name was passed to the Python interpreter, argv has zero length.

byteorder
An indicator of the native byte order. This will have the value 'big' on big-endian
(most-signigicant byte first) platforms, and 'little' on little-endian (least-significant byte first)
platforms. New in version 2.0.

builtin_module_names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter.
(This information is not available in any other way -- modules.keys() only lists the imported
modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook(value)
If value is not None, this function prints it to sys.stdout, and saves it in __builtin__._.

sys.displayhook is called on the result of evaluating an expression entered in an interactive
Python session. The display of these values can be customized by assigning another one-argument
function to sys.displayhook.

excepthook(type, value, traceback)
This function prints out a given traceback and exception to sys.stderr.

When an exception is raised and uncaught, the interpreter calls sys.excepthook with three
arguments, the exception class, exception instance, and a traceback object. In an interactive session
this happens just before control is returned to the prompt; in a Python program this happens just
before the program exits. The handling of such top-level exceptions can be customized by
assigning another three-argument function to sys.excepthook.

__displayhook__
__excepthook__

These objects contain the original values of displayhook and excepthook at the start of the
program. They are saved so that displayhook and excepthook can be restored in case they
happen to get replaced with broken objects.

exc_info()
This function returns a tuple of three values that give information about the exception that is
currently being handled. The information returned is specific both to the current thread and to the
current stack frame. If the current stack frame is not handling an exception, the information is taken
from the calling stack frame, or its caller, and so on until a stack frame is found that is handling an
exception. Here, ``handling an exception'' is defined as ``executing or having executed an except
clause.'' For any stack frame, only information about the most recently handled exception is
accessible.

If no exception is being handled anywhere on the stack, a tuple containing three None values is
returned. Otherwise, the values returned are (type, value, traceback). Their meaning is: type
gets the exception type of the exception being handled (a class object); value gets the exception
parameter (its associated value or the second argument to raise, which is always a class instance
if the exception type is a class object); traceback gets a traceback object (see the Reference
Manual) which encapsulates the call stack at the point where the exception originally occurred.

If exc_clear() is called, this function will return three None values until either another
exception is raised in the current thread or the execution stack returns to a frame where another
exception is being handled.

Warning: Assigning the traceback return value to a local variable in a function that is handling an
exception will cause a circular reference. This will prevent anything referenced by a local variable
in the same function or by the traceback from being garbage collected. Since most functions don't
need access to the traceback, the best solution is to use something like exctype, value =
sys.exc_info()[:2] to extract only the exception type and value. If you do need the
traceback, make sure to delete it after use (best done with a try ... finally statement) or to call
exc_info() in a function that does not itself handle an exception. Note: Beginning with Python
2.2, such cycles are automatically reclaimed when garbage collection is enabled and they become
unreachable, but it remains more efficient to avoid creating cycles.

exc_clear()
This function clears all information relating to the current or last exception that occurred in the
current thread. After calling this function, exc_info() will return three None values until
another exception is raised in the current thread or the execution stack returns to a frame where
another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error
handling systems that report information on the last or current exception. This function can also be
used to try to free resources and trigger object finalization, though no guarantee is made as to what
objects will be freed, if any. New in version 2.3.

exc_type
exc_value
exc_traceback

Deprecated since release 1.5. Use exc_info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in
a multi-threaded program. When no exception is being handled, exc_type is set to None and the
other two are undefined.

exec_prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are
installed; by default, this is also '/usr/local'. This can be set at build time with the
--exec-prefix argument to the configure script. Specifically, all configuration files (e.g. the

pyconfig.h header file) are installed in the directory exec_prefix +
'/lib/pythonversion/config', and shared library modules are installed in exec_prefix
+ '/lib/pythonversion/lib-dynload', where version is equal to version[:3].

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this
makes sense.

exit([arg])
Exit from Python. This is implemented by raising the SystemExit exception, so cleanup actions
specified by finally clauses of try statements are honored, and it is possible to intercept the exit
attempt at an outer level. The optional argument arg can be an integer giving the exit status
(defaulting to zero), or another type of object. If it is an integer, zero is considered ``successful
termination'' and any nonzero value is considered ``abnormal termination'' by shells and the like.
Most systems require it to be in the range 0-127, and produce undefined results otherwise. Some
systems have a convention for assigning specific meanings to specific exit codes, but these are
generally underdeveloped; UNIX programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is passed, None is equivalent to passing zero, and
any other object is printed to sys.stderr and results in an exit code of 1. In particular,
sys.exit("some error message") is a quick way to exit a program when an error
occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to
specify a clean-up action at program exit. When set, it should be a parameterless function. This
function will be called when the interpreter exits. Only one function may be installed in this way; to
allow multiple functions which will be called at termination, use the atexit module. Note: The
exit function is not called when the program is killed by a signal, when a Python fatal internal error
is detected, or when os._exit() is called.
Deprecated since release 2.4. Use atexit instead.

getcheckinterval()
Return the interpreter's ``check interval''; see setcheckinterval(). New in version 2.3.

getdefaultencoding()
Return the name of the current default string encoding used by the Unicode implementation. New
in version 2.0.

getdlopenflags()
Return the current value of the flags that are used for dlopen() calls. The flag constants are
defined in the dl and DLFCN modules. Availability: UNIX. New in version 2.2.

getfilesystemencoding()
Return the name of the encoding used to convert Unicode filenames into system file names, or
None if the system default encoding is used. The result value depends on the operating system:

On Windows 9x, the encoding is ``mbcs''.
On Mac OS X, the encoding is ``utf-8''.
On Unix, the encoding is the user's preference according to the result of
nl_langinfo(CODESET), or None if the nl_langinfo(CODESET) failed.
On Windows NT+, file names are Unicode natively, so no conversion is performed.
getfilesystemencoding still returns ``mbcs'', as this is the encoding that applications
should use when they explicitly want to convert Unicode strings to byte strings that are
equivalent when used as file names.

New in version 2.3.

getrefcount(object)
Return the reference count of the object. The count returned is generally one higher than you might
expect, because it includes the (temporary) reference as an argument to getrefcount().

getrecursionlimit()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack.
This limit prevents infinite recursion from causing an overflow of the C stack and crashing Python.
It can be set by setrecursionlimit().

_getframe([depth])
Return a frame object from the call stack. If optional integer depth is given, return the frame object
that many calls below the top of the stack. If that is deeper than the call stack, ValueError is
raised. The default for depth is zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion()
Return a tuple containing five components, describing the Windows version currently running. The
elements are major, minor, build, platform, and text. text contains a string while all other values are
integers.

platform may be one of the following values:

Constant Platform
0 (VER_PLATFORM_WIN32s) Win32s on Windows 3.1
1 (VER_PLATFORM_WIN32_WINDOWS) Windows 95/98/ME
2 (VER_PLATFORM_WIN32_NT) Windows NT/2000/XP
3 (VER_PLATFORM_WIN32_CE) Windows CE

This function wraps the Win32 GetVersionEx() function; see the Microsoft documentation for
more information about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version,
including proper support for non-production releases. For example, to test that the Python
interpreter is at least version 1.5.2, use:

if sys.hexversion >= 0x010502F0:
 # use some advanced feature
 ...
else:
 # use an alternative implementation or warn the user
 ...

This is called "hexversion" since it only really looks meaningful when viewed as the result of
passing it to the built-in hex() function. The version_info value may be used for a more
human-friendly encoding of the same information. New in version 1.5.2.

last_type
last_value
last_traceback

These three variables are not always defined; they are set when an exception is not handled and the
interpreter prints an error message and a stack traceback. Their intended use is to allow an

interactive user to import a debugger module and engage in post-mortem debugging without having
to re-execute the command that caused the error. (Typical use is "import pdb; pdb.pm()" to
enter the post-mortem debugger; see chapter 9, ``The Python Debugger,'' for more information.)

The meaning of the variables is the same as that of the return values from exc_info() above.
(Since there is only one interactive thread, thread-safety is not a concern for these variables, unlike
for exc_type etc.)

maxint
The largest positive integer supported by Python's regular integer type. This is at least 2**31-1. The
largest negative integer is -maxint-1 -- the asymmetry results from the use of 2's complement
binary arithmetic.

maxunicode
An integer giving the largest supported code point for a Unicode character. The value of this
depends on the configuration option that specifies whether Unicode characters are stored as UCS-2
or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can
be manipulated to force reloading of modules and other tricks. Note that removing a module from
this dictionary is not the same as calling reload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment
variable PYTHONPATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this list, path[0], is the directory containing
the script that was used to invoke the Python interpreter. If the script directory is not available (e.g.
if the interpreter is invoked interactively or if the script is read from standard input), path[0] is
the empty string, which directs Python to search modules in the current directory first. Notice that
the script directory is inserted before the entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.

Changed in version 2.3: Unicode strings are no longer ignored.

platform
This string contains a platform identifier, e.g. 'sunos5' or 'linux1'. This can be used to
append platform-specific components to path, for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are
installed; by default, this is the string '/usr/local'. This can be set at build time with the
--prefix argument to the configure script. The main collection of Python library modules is
installed in the directory prefix + '/lib/pythonversion' while the platform independent
header files (all except pyconfig.h) are stored in prefix + '/include/pythonversion',
where version is equal to version[:3].

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if
the interpreter is in interactive mode. Their initial values in this case are '>>> ' and '... '. If
a non-string object is assigned to either variable, its str() is re-evaluated each time the interpreter
prepares to read a new interactive command; this can be used to implement a dynamic prompt.

setcheckinterval(interval)
Set the interpreter's ``check interval''. This integer value determines how often the interpreter
checks for periodic things such as thread switches and signal handlers. The default is 100, meaning
the check is performed every 100 Python virtual instructions. Setting it to a larger value may
increase performance for programs using threads. Setting it to a value <= 0 checks every virtual
instruction, maximizing responsiveness as well as overhead.

setdefaultencoding(name)
Set the current default string encoding used by the Unicode implementation. If name does not
match any available encoding, LookupError is raised. This function is only intended to be used
by the site module implementation and, where needed, by sitecustomize. Once used by the
site module, it is removed from the sys module's namespace. New in version 2.0.

setdlopenflags(n)
Set the flags used by the interpreter for dlopen() calls, such as when the interpreter loads
extension modules. Among other things, this will enable a lazy resolving of symbols when
importing a module, if called as sys.setdlopenflags(0). To share symbols across
extension modules, call as sys.setdlopenflags(dl.RTLD_NOW | dl.RTLD_GLOBAL).
Symbolic names for the flag modules can be either found in the dl module, or in the DLFCN
module. If DLFCN is not available, it can be generated from /usr/include/dlfcn.h using the h2py
script. Availability: UNIX. New in version 2.2.

setprofile(profilefunc)
Set the system's profile function, which allows you to implement a Python source code profiler in
Python. See chapter 10 for more information on the Python profiler. The system's profile function
is called similarly to the system's trace function (see settrace()), but it isn't called for each
executed line of code (only on call and return, but the return event is reported even when an
exception has been set). The function is thread-specific, but there is no way for the profiler to know
about context switches between threads, so it does not make sense to use this in the presence of
multiple threads. Also, its return value is not used, so it can simply return None.

setrecursionlimit(limit)
Set the maximum depth of the Python interpreter stack to limit. This limit prevents infinite
recursion from causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she
has a program that requires deep recursion and a platform that supports a higher limit. This should
be done with care, because a too-high limit can lead to a crash.

settrace(tracefunc)
Set the system's trace function, which allows you to implement a Python source code debugger in
Python. See section 9.2, ``How It Works,'' in the chapter on the Python debugger. The function is
thread-specific; for a debugger to support multiple threads, it must be registered using
settrace() for each thread being debugged. Note: The settrace() function is intended only
for implementing debuggers, profilers, coverage tools and the like. Its behavior is part of the
implementation platform, rather than part of the language definition, and thus may not be available
in all Python implementations.

settscdump(on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, if on_flag is true.
Deactivate these dumps if on_flag is off. The function is available only if Python was compiled
with --with-tsc. To understand the output of this dump, read Python/ceval.c in the Python
sources. New in version 2.4.

stdin
stdout
stderr

File objects corresponding to the interpreter's standard input, output and error streams. stdin is
used for all interpreter input except for scripts but including calls to input() and
raw_input(). stdout is used for the output of print and expression statements and for the
prompts of input() and raw_input(). The interpreter's own prompts and (almost all of) its
error messages go to stderr. stdout and stderr needn't be built-in file objects: any object is
acceptable as long as it has a write() method that takes a string argument. (Changing these
objects doesn't affect the standard I/O streams of processes executed by os.popen(),
os.system() or the exec*() family of functions in the os module.)

__stdin__
__stdout__
__stderr__

These objects contain the original values of stdin, stderr and stdout at the start of the
program. They are used during finalization, and could be useful to restore the actual files to known
working file objects in case they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of
traceback information printed when an unhandled exception occurs. The default is 1000. When set
to 0 or less, all traceback information is suppressed and only the exception type and value are
printed.

version
A string containing the version number of the Python interpreter plus additional information on the
build number and compiler used. It has a value of the form 'version (#build_number,
build_date, build_time) [compiler]'. The first three characters are used to identify the version
in the installation directories (where appropriate on each platform). An example:

>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]'

api_version
The C API version for this interpreter. Programmers may find this useful when debugging version
conflicts between Python and extension modules. New in version 2.3.

version_info
A tuple containing the five components of the version number: major, minor, micro, releaselevel,
and serial. All values except releaselevel are integers; the release level is 'alpha', 'beta',
'candidate', or 'final'. The version_info value corresponding to the Python version
2.0 is (2, 0, 0, 'final', 0). New in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Refer to the
warnings module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string
resource 1000 in the Python DLL. The value is normally the first three characters of version. It
is provided in the sys module for informational purposes; modifying this value has no effect on
the registry keys used by Python. Availability: Windows.

See Also:

Module site:
This describes how to use .pth files to extend sys.path.

Release 2.4.3, documentation updated on 29 March 2006.
See About this document... for information on suggesting changes.

