
GCubo: Grupo de usuarios de GNU/Linux de Granada

Ernesto Revilla
Software Integrado para el Control de Empresas, s.l.

 GCubo: Grupo de usuarios de GNU/Linux de Granada

E.T.S.Ing. Informática (Univ. Granada)
Abril 2.004

Python AvanzadoPython Avanzado

GCubo: Grupo de usuarios de GNU/Linux de Granada

Herencia simple desde tipos internos
Python, desde la versión 2.2 permite heredar desde tipos de datos internos,
como:
● int, float, complex, str, unicode
● list, dict, tuple

class DefaultDict(dict):
 def __init__(self, initialValues=None, default=0.0):
 dict.__init__(initialValues or {})
 self._default=default
 def __getitem__(self, key):
 try:
 return dict.__getitem__(self, key)
 except KeyError:
 return self._default
if __name__=="__main__":
 d=DefaultDict({'a': 5})
 print 'valor de e:', d['e']
 print 'valor de a:', d['a']
Vea DefaultDicc.py

GCubo: Grupo de usuarios de GNU/Linux de Granada

Simular tipos internos 1
Existen construcciones sintácticas que facilitan la redacción de los programas,
como [], { }, !=, ... Podemos personalizar su comportamiento.
Realizamos un diccionario por delegación:

class MiDicc:
 def __init__(self, diccInicial=None):
 self._dicc=dict(diccInicial or {})
 def __getitem__(self, item):
 print "leyendo", item
 return self._dicc[item]
 def __setitem__(self, item, valor):
 print "estableciendo", item
 self._dicc[item]=valor
 def zap(self):
 self._dicc={}
 def __getattr__(self, attr):
 if attr in ['items', 'keys', 'values']:
 return getattr(self._dicc, attr)
Vea MiDicc.py.

GCubo: Grupo de usuarios de GNU/Linux de Granada

Simular tipos internos 2
Usar las entradas del diccionario como atributos:

class MiDicc2(MiDicc):
 def __getattr__(self, attr):
 return MiDicc.__getitem__(self, attr)
 def __setattr__(self, attr, valor):
 MiDicc.__setitem__(self, attr, valor)
produce bucle infinito!!, al establecer atributo _dicc in MiDicc
 def __setattr__(self, attr, valor):
 if attr not in ['_dicc']:
 MiDicc.__setitem__(self, attr, valor)
 else:
 MiDicc.__dict__['_dicc']=valor
 # si MiDicc hubiese heredado de object
 # MiDicc.__setattr__(self, attr, valor)
Vea MiDicc2.py.

GCubo: Grupo de usuarios de GNU/Linux de Granada

Un ejemplo práctico
Para este ejemplo es necesario tener la base de datos sqlite (www.sqlite.org),
como también el binding para python (pysqlite.sourceforge.net).
Conexión a una bd sqlite:

import sqlite
con=sqlite.connect('archivo.sqlite')
cur=con.cursor()
def crearTabla():
 cur.execute("create table personas (num integer, "\
 "nombre text, "apellidos text, edad integer;")
def insertarDatosEjemplo():
 personas=[[1, 'Erny', 'Revilla'], [2, 'Lorenzo', 'Gil'],

 [3, 'Dani', 'Molina']]
 for persona in personas:
 cur.execute("insert into personas (num, nombre, "\
 "apellidos) values (%s, '%s', '%s');" % tuple(persona))

Vea los archivo db1.py, db2.py y db3.py que muestran como puede crearse una
pequeña capa de persistencia para objetos.

GCubo: Grupo de usuarios de GNU/Linux de Granada

Cosas sobre __init__
● __init__ representa el método de inicialización de instancia, no es el

constructor (como en c++) sino el inicializador.

● __init__ es llamado después de haberse reservado la memoria y realizado
una minima inicialización del objeto.

● al realizar herencia múltiple es necesario definir __init__ para indicar el
orden de las llamadas de __init__ de las superclases

class A(object):
 def __init__(self):
 print "__init__ de A"
class B(object):
 def __init__(self):
 print "__init__ de B"
class C(A,B): pass # esto está mal!!!
c=C()
class C(A,B):
 def __init__(self):
 A.__init__(self)
 B.__init__(self)
Vea EjemploInit.py

GCubo: Grupo de usuarios de GNU/Linux de Granada

__new__, el constructor
● __new__ siempre es un método de clase
● __new__ aparece en la versión 2.2 de python
● con __new__ se puede devolver también instancias de otros tipos.
Ejemplos:
class A(object):
 def __init__(self, *args, **kwargs):
 print "creando objeto de tipo A con "\
 "argumentos pos. %s y argumentos nombrados %s"

% (args, kwargs)

devolver otros tipos de objetos
class B(object):
 def __new__(cls, *args, **kwargs):
 return A(*args, **kwargs)
x=B(1,2, pepe='no')
Vea EjemploNew.py

GCubo: Grupo de usuarios de GNU/Linux de Granada

__new__: singleton
singleton:
class Singleton(object):
 _instance=None
 def __new__(cls, *args, **kwargs):
 if not cls._instance:
 print "Creando Singleton"
 cls._instance=object.__new__(cls, *args,

**kwargs)
 return cls._instance

 def __init__(self, *args, **kwargs):
 print "Inicializando Singleton"

s=Singleton()
s=Singleton()

GCubo: Grupo de usuarios de GNU/Linux de Granada

Metaclases
● Al terminar la lectura de la definición de una clase, Python crea ésta usando

una metaclase de forma Metaclase(nombre, superclases, diccionario)
● Nombre es el nombre de la clase, Superclases es una tupla
● diccionario contiene las funciones e identificadores definidos dentro de la

clase
● Actualmente (>=2.2) usa dos metaclases, una para las clases antiguas

(types.ClassType) y otra para las nuevas (type)
● En la metaclase podemos definir nuevos atributos o funciones para la clase
class Metaclase(type):
 def __init__(self, name, bases, dic):
 type.__init__(self, name, bases, dic)
 print "\nDefiniendo clase %s:" % name
 print "Bases: %s" % (bases or None)
 print "Dict: %s" % dic
class A(object):
 __metaclass__=Metaclase
 _attributes=["at1","at2","at3"]
 y=5
 def __init__(self):
 self.x=10

GCubo: Grupo de usuarios de GNU/Linux de Granada

Metaclases 2
Vea Metaclases.py para ejemplo anterior.

El siguiente ejemplo crea nuevos métodos en una clase (getters y setters) para
los atributos especificados.

class Metaclase(type):
 def __init__(self, name, bases, dic):
 type.__init__(self, name, bases, dic)
 if "_attributes" in dic:
 for attr in dic['_attributes']:
 f=lambda s,a=attr: getattr(s,a)
 setattr(self, 'get'+attr, f)
 f=lambda s, value, a=attr: setattr(s,a,value)
 setattr(self, 'set'+attr, f)
Vea Metaclases2.py

