Python Avanzado

Ernesto Revilla

Software Integrado para el Control de Empresas, s.l.
N

>
GCubo: Grupo de usuarios de GNU/Linux de Granada

E.T.S.Ing. Informatica (Univ. Granada)
Abril 2.004

@ GCubo: Grupo de usuarios de GNU/Linux de Granada

Herencia simple desde tipos internos

P W
Python, desde la version 2.2 permite heredar desde tipos de datos internos,

Como:
* Int, float, complex, str, unicode

* list, dict, tuple

class DefaultDict (dict) :
def 1nit (self, initialValues=None, default=0.0):
dict. 1nit (initialValues or {})
self. default=default
def getitem (self, key):
try:
return dict. getitem (self, key)

except Keykrror:
return self. default

if name ==" main ":
d=DefaultDict({'a': 5})
print 'valor de e:', d['e
print 'valor de a:', d['a']

Vea DefaultDicc.py

T,ﬁ GCubo: Grupo de usuarios de GNU/Linux de Granada

Simular tipos internos 1

Existen construcciones sintacticas que facilitan la redaccion de los programas,
como|[],{}, =, ... Podemos personalizar su comportamiento.
Realizamos un diccionario por delegacion:

class MiDicc:
def 1nit (self, diccInicial=None):
self. dicc=dict(diccInicial or {})
def getitem (self, 1tem):
print "leyendo", item
return self. dicc[item]
def setitem (self, 1tem, valor):
print "estableciendo", i1tem
self. dicc[item]=valor
def zap(self):
self. dicc={}
def getattr (self, attr):
1f attr 1n ['items', 'keys', 'wvalues']:
return getattr(self. dicc, attr)

Vea MiDicc.py.

T,ﬁ GCubo: Grupo de usuarios de GNU/Linux de Granada

Simular tipos internos 2

e o R e R R R T
Usar las entradas del diccionario como atributos:

class MiDicc?2 (MiDicc) :
def getattr (self, attr):
return MiDicc. getitem (self, attr)
def setattr (self, attr, wvalor):
MiDicc. setitem (self, attr, valor)

produce bucle infinito!!, al establecer atributo dicc in MiDicc
def setattr (self, attr, valor):

if attr not in [' dicc']:
MiDicc. setitem (self, attr, valor)
else:
MiDicc. dict [' dicc']=valor
si MiDicc hubiese heredado de object
MiDicc. setattr (self, attr, wvalor)

Vea MiDicc2.py.

'1;;, GCubo: Grupo de usuarios de GNU/Linux de Granada

Un ejemplo practico

Para este ejemplo es necesario tener la base de datos sqlite (www.sqlite.org),
como también el binding para python (pysqlite.sourceforge.net).
Conexion a una bd sqlite:

import sglite
con=sqglite.connect ('archivo.sglite')
cur=con.cursor ()
def crearTablal() :

cur.execute ("create table personas (num integer, "\

"nombre text, "apellidos text, edad integer;")

def insertarDatosEjemplo () :

personas=[[1, 'Erny', 'Revilla'], [2, 'Lorenzo', 'Gil'],

[3, 'Dani', 'Molina']]
for persona 1n personas:
cur.execute ("insert into personas (num, nombre, "\

©)

"apellidos) values (%s, '%ss', '"%s');" % tuple(persona))

Vea los archivo dbl.py, db2.py y db3.py que muestran como puede crearse una
pequena capa de persistencia para objetos.

7,! GCubo: Grupo de usuarios de GNU/Linux de Granada

Cosas sobre _ Init_

. Init__ representa el método de inicializacion de instancia, no es el
constructor (como en c++) sino el inicializador.

. Init___ es llamado después de haberse reservado la memoria y realizado
una minima inicializacion del objeto.

* al realizar herencia multiple es necesario definir __init__ para indicar el
orden de las llamadas de __init__ de las superclases

class A(object) :
def 1nit (self):
print " 1init de A"
class B(object) :
def 1nit (self):
print " 1init de B"
class C(A,B): pass # esto estd mal!!!
c=C ()
class C(A,B):
def 1nit (self):
A. 1nit (self)
B. 1nit (self)
Vea Ejemplolnit.py - % GCubo: Grupo de suarios de GNU/Linux de Granada

__new__, el constructor

WO A
* new__ siempre es un meétodo de clase
* new__ aparece en la version 2.2 de python

* con__new__ se puede devolver también instancias de otros tipos.
Ejemplos:
class A (object):
def 1nit (self, *args, **kwargs):
print "creando objeto de tipo A con "\

"argumentos pos. %$s y argumentos nombrados %s"
% (args, kwargs)

devolver otros tipos de objetos
class B(object):
def new (cls, *args, **kwargs):
return A(*args, **kwargs)
x=B(1l,2, pepe='no')

Vea EjemploNew.py

'1;;, GCubo: Grupo de usuarios de GNU/Linux de Granada

new__ : singleton

ilrutlE s Tl
singleton:
class Singleton (object) :
_lnstance=None
def new (cls, *args, **kwargs):
1f not cls. instance:
print "Creando Singleton"
cls. instance=object. new (cls, *args,
**kwargs)

return cls._instance

def 1nit (self, *args, **kwargs):
print "Inicilializando Singleton"

s=Singleton ()
s=Singleton ()

ﬁ-@ GCubo: Grupo de usuarios de GNU/Linux de Granada

Metaclases

Al terminar la lectura de la definicion de una clase, Python crea esta usando
una metaclase de forma Metaclase(nombre, superclases, diccionario)

Nombre es el nombre de la clase, Superclases es una tupla

diccionario contiene las funciones e identificadores definidos dentro de la
clase

Actualmente (>=2.2) usa dos metaclases, una para las clases antiguas
(types.ClassType) y otra para las nuevas (type)

En la metaclase podemos definir nuevos atributos o funciones para la clase

class Metaclase (type) :

def 1nit (self, name, bases, dic):
type. 1nit (self, name, bases, dic)
print "\nDefiniendo clase %s:" % name

print "Bases: %s" % (bases or None)
print "Dict: %s" $ dic

class A (object):

metaclass =Metaclase

:gttributes=["atl","at2","at3"]
Y=
def init (self):

self.x=10

!,r GCubo: Grupo de usuarios de GNU/Linux de Granada

Metaclases 2

il . Tl
Vea Metaclases.py para ejemplo anterior.

El siguiente ejemplo crea nuevos métodos en una clase (getters y setters) para
los atributos especificados.

class Metaclase (type) :
def 1nit (self, name, bases, dic):
type. 1nit (self, name, bases, dic)
if " attributes" 1in dic:
for attr in dic[' attributes']:
f=lambda s,a=attr: getattr (s, a)
setattr(self, 'get'+attr, £

)
f=lambda s, value, a=attr: setattr(s,a,value)
setattr(self, 'set'+attr, f)

Vea Metaclases2.py

‘r;:a GCubo: Grupo de usuarios de GNU/Linux de Granada

