COMP 118: Procedural Programming. Fall 2003.

Python Cheat Sheet

When learning about a new technical area there's often a bewildering
amount of detail to keep track of. Generations of techies have made
use of cheat sheets to have an easy reference to these details.

A more detailed alternative is provided by the Python Quick
Reference. If you want to print it out or save it locally several forms
are available

..

Contents

Arithmetic - Strings - Assignment - print - Getting Input - if - while -
Play again? - Lists
- Text file processing - Dictionaries

Arithmetic

Constants (Number types):
® integers, e.g. 18, -341. A suffix L indicates a long integer,
e.g. 34251673L.
e floating point values, e.g. 3.001
Operations:
+ for addition
- for subtraction
* for multiplication
/ for division (watch for integer division, e.g. 19 / 4 = 4, not
4.75)
s for remainder or modulo, e.g. 19% 4 =3
+* for exponentiation, e.g. 2* 4 =16

Strings

Constants: "This is a string"
Operations:

e = for assignment, e.¢. name = "Tim Topper"
e ; for concatenation, e.g. "Hi" + "Ho" --> "HiHo"
e for repetition, e.g. 3 * "Ho" --> "HoHoHo"

Notes:
® Strings can be delimited by either double quotes "Tim" or
single quotes 'Tim'.
e Multiline values can be assigned to a string by triple quoting

the contents, e.g.

silly = """ Two
Lines llllll

Trying the same thing without triple quoting results in an
error, e.g.

silly = "Two
Lines"

o Another method is to embed control codes for newline
characters into the string, e.g.

silly = "Two\nLines"

The most common control codes are: \n for newline and \t

for tab. The Python Quick Reference provides a complete
list.

Like lists Python strings are a sequence type so many list commands
also work with strings.

® e.g. s[i] accesses element number i of the string s.
Testing string contents:

n n n n n 0 0 o

S.

.isalnum()
.isalpha()
.isdigit()
.isspace()
.islower ()
.isupper ()
.istitle()

.endswith(suffix)

startswith(prefix)

Finding things in strings:

n n n ®n

S

.count (substring)
.find(substring)
.index(substring)
.rfind(substring)

.rindex (substring)

Changing strings. Remember that strings are immutable so to make a
change "stick" you have to do, e.g. s = s.title().

n 0 n 0 0 n n L n on

S

.swapcase ()
.upper ()

.lower ()
.title()
.capitalize()
.center ()
.1just()
.rjust()
.strip()
.1lstrip(chars)

.rstrip(chars)

String to list:
® list = s.split(list)
List to string:

® s.join(list) Where s is the string to join the elements of
list with.

Assignment

Use = to assign a name to a value, €.g. distance = 48.1, name = "Tim
Topper". Remember that the name has to be on the left hand side of
the =, i.e. 48.1 = distance iS an error.

print

Use print to display stored values.

print list

Displays the value of each item in the list. Puts a space between each
pair of values. Example: print "The answer is", 5 + 2, "." displays:

The answer is 7 .

Appending a comma to the end of a print statement holds the current
output line open, e.g. the code

print "The answer is",
print 5 + 2, "."

displays
The answer is 7 .

on a single line.

For more control over output appearance embed formatting codes into
output strings. See section 2.2.6.2 String Formatting Operations of the
Python Library Reference for the gory details.

Getting Input

Use input to get numerical data from the user,
input(string)

and raw_input to get string data.

Both display string (if given) and then read a line of input, by default
from the keyboard. The difference is that raw_input just returns the

string, while input evaluates it as a Python exprssion and returns the
result.

Example:
distance = input("Enter the distance in miles: "

)

name = raw_input("What is your name? ")

N.B. the spaces before the second " in each case.
if

Use if to execute one block of code or another, but not both.

iT test:
statements

elif test:
statements

else:
Sstatements

N.B. the e1if and else Statements are optional as shown in the first
two examples below.
Examples:

if x < 0: print x, "is negative”

if flip == 1:

print "You got heads"
else:

print "You got tails"

if num < O:

print "The number'™, num,
elif num == 0O:

print "The number'™, num, "is neither positive nor negative."
else:

print "The number', num, "is positive."

is negative."”

while

Use while to execute a block of code multiple times.

while test:
statements

Examples:

x =1

while x < 10
print X
X=x+1

num = input("Enter a number between 1 and 100: ")

whille num < 1 or num > 100:
print "Oops, your input value (', num, ") is out of range."
num = input("Be sure to enter a value between 1 and 100: ")

Play again? Repeating a program

again = "y

while again == "y" or again == "Y" or again == "yes" or again == "Yes":
#
Put the body of your program here
#

again = raw_input("Play again (y/n)? ™)

print "Thanks for playing"”

Lists

Unlike many languages Python provides a built-in list type. A list
constant is just a list of items separated by commas and placed inside
square brackets, e.g. ["Tim", 42, "Molly"].

Python provides for a wealth of list operations (complete list in
reference manual):
® 1listl + list2 : concatenates 1ist1 and 1ist2

list[i] : access element number iin 1ist.

len(list) : returns the number of elements in 1ist

del 1list[i] : deletes element number i from 1ist

list.append(value) . appends value tO list

list.sort() : sorts the elements in 1ist

list.reverse() : reverses the order of the elements in 1ist

list.index(value) : returns the position of the first

occurrence of value in 1ist

list.insert(i, value) : iNserts value iNto 1ist at position

i

® list.count(value) : returns a count of the number of
times value OCCUrIS in list

® list.remove(value) . deletes the first occurrence of value
in 1ist

® 1list.pop() : deletes and returns the last value in 1ist

® value in list : iS True if value Occurs in list and False
otherwise

N.B. the elements in lists are numbered from 0, not 1.

Text file processing

To read from a file a line at a time:

infilename = raw_input("Name of file to read from: ")

infile = open(infilename, r")

for line in infile:
Do stuff with line.
Remember that line is a string even if it looks like a number,
e.g-. num = int(line)

infile.close()

There's more than this of course. You can also read the entire file into
a string in one fell swoop using infile.read(), read the entire file into

a list of strings (one per line in the file) using infile.readlines(), Or
read a certain number of bytes using infile.read(N) Where N gives
the number of bytes to read.

To write to a file:

outfilename = raw_input("Name of file to write to: ")
outfile = open(outfilename, "w")

print >> outfile, ...

outfile.close()

For more see the Python library reference on File Objects.

Dictionaries

Python provides a built-in lookup table type it calls a dictionary (often
called hash tables in other languages).

A dictionary constant consists of a series of key-value pairs enclosed
by curly braces, e.g. 4 = { 'Tim' : 775, 'Brian' : 869 }. This
creates a dictionary we can visualize as:

Key Value
Tim — 775

‘Brian’ —* 869

Common dictionary operations include:

® d4['Tim'] Accessing an element.

® 4] 'a-s' 1 = 770 Modifying or inserting a value.

® d.has key('Brian') Checking to see if there is a value for
a particular key.
d.keys () Get a list of all the keys in the dictionary. Often
used for iterating through the entries in the dictionary.
® d.values() Get a list of all the values that occur in the
dictionary.
del(d['Tim' 1) Delete an entry in the dictionary.
d.clear () Delete all the entries in a dictionary.

