
Metaclasses in Python 1.5

(A.k.a. The Killer Joke :-)

(Postscript: reading  this  essay  is  probably  not  the  best  way to  understand the  metaclass  hook 
described  here.  See  a  message  posted  by  Vladimir  Marangozov which  may  give  a  gentler 
introduction to the matter. You may also want to search Deja News for messages with "metaclass" 
in the subject posted to comp.lang.python in July and August 1998.) 

In previous Python releases (and still in 1.5), there is something called the ``Don Beaudry hook'', 
after  its  inventor  and  champion.  This  allows C extensions  to  provide  alternate  class  behavior, 
thereby allowing the Python class syntax to be used to define other class-like entities. Don Beaudry 
has used this in his  infamous  MESS package;  Jim Fulton has used it  in his  Extension Classes 
package. (It has also been referred to as the ``Don Beaudry hack,'' but that's a misnomer. There's 
nothing hackish about it -- in fact, it is rather elegant and deep, even though there's something dark 
to it.) 

(On first reading, you may want to skip directly to the examples in the section "Writing Metaclasses 
in Python" below, unless you want your head to explode.) 

Documentation of the Don Beaudry hook has purposefully been kept minimal, since it is a feature 
of incredible power, and is easily abused. Basically, it checks whether the type of the base class is 
callable, and if so, it is called to create the new class. 

Note the two indirection levels. Take a simple example: 
class B:
    pass

class C(B):
    pass

Take a look at the second class definition, and try to fathom ``the type of the base class is callable.'' 

(Types are not classes, by the way. See questions 4.2, 4.19 and in particular 6.22 in the Python FAQ 
for more on this topic.) 

• The base class is B; this one's easy.

• Since B is a class, its type is ``class''; so the type of the base class is the type ``class''. This 
is also known as types.ClassType, assuming the standard module types has been imported.

• Now is the type ``class''  callable? No, because types (in core Python) are never callable. 
Classes are callable (calling a class creates a new instance) but types aren't.

So our conclusion is that in our example, the type of the base class (of C) is not callable. So the Don 
Beaudry hook does not apply, and the default class creation mechanism is used (which is also used 
when there is no base class). In fact, the Don Beaudry hook never applies when using only core 
Python, since the type of a core object is never callable. 

So what do Don and Jim do in order to use Don's hook? Write an extension that defines at least two 
new Python object types. The first would be the type for ``class-like'' objects usable as a base class, 
to trigger Don's hook. This type must be made callable. That's why we need a second type. Whether 
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an object is callable depends on its type. So whether a type object is callable depends on its type, 
which  is  a  meta-type.  (In  core  Python  there  is  only  one  meta-type,  the  type  ``type'' 
(types.TypeType), which is the type of all type objects, even itself.) A new meta-type must be 
defined that makes the type of the class-like objects callable. (Normally, a third type would also be 
needed, the new ``instance'' type, but this is not an absolute requirement -- the new class type could 
return an object of some existing type when invoked to create an instance.) 

Still confused? Here's a simple device due to Don himself to explain metaclasses. Take a simple 
class definition; assume B is a special class that triggers Don's hook: 
class C(B):
    a = 1
    b = 2

This can be though of as equivalent to: 
C = type(B)('C', (B,), {'a': 1, 'b': 2})

If that's too dense for you, here's the same thing written out using temporary variables: 
creator = type(B)               # The type of the base class
name = 'C'                      # The name of the new class
bases = (B,)                    # A tuple containing the base class(es)
namespace = {'a': 1, 'b': 2}    # The namespace of the class statement
C = creator(name, bases, namespace)

This is analogous to what happens without the Don Beaudry hook, except that in that case the 
creator function is set to the default class creator. 

In either case, the creator is called with three arguments. The first one, name, is the name of the new 
class (as given at the top of the class statement). The bases argument is a tuple of base classes (a 
singleton tuple if there's only one base class, like the example). Finally, namespace is a dictionary 
containing the local variables collected during execution of the class statement. 

Note that the contents of the namespace dictionary is simply whatever names were defined in the 
class statement. A little-known fact is that when Python executes a class statement, it enters a new 
local namespace, and all assignments and function definitions take place in this namespace. Thus, 
after executing the following class statement: 
class C:
    a = 1
    def f(s): pass

the class namespace's contents would be {'a': 1, 'f': <function f ...>}. 

But enough already about writing Python metaclasses in C; read the documentation of  MESS or 
Extension Classes for more information. 

Writing Metaclasses in Python
In  Python 1.5,  the  requirement  to  write  a  C extension  in  order  to  write  metaclasses  has  been 
dropped (though you can still do it, of course). In addition to the check ``is the type of the base class 
callable,'' there's a check ``does the base class have a __class__ attribute.'' If so, it is assumed that 
the __class__ attribute refers to a class. 

Let's repeat our simple example from above: 
class C(B):
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    a = 1
    b = 2

Assuming B has a __class__ attribute, this translates into: 
C = B.__class__('C', (B,), {'a': 1, 'b': 2})

This is exactly the same as before except that instead of type(B), B.__class__ is invoked. If you 
have read  FAQ question 6.22 you will understand that while there is a big technical difference 
between type(B)  and B.__class__,  they  play  the  same role  at  different  abstraction  levels.  And 
perhaps at some point in the future they will really be the same thing (at which point you would be 
able to derive subclasses from built-in types). 

At this point it may be worth mentioning that C.__class__ is the same object as B.__class__, i.e., 
C's metaclass is the same as B's metaclass. In other words, subclassing an existing class creates a 
new (meta)inststance of the base class's metaclass. 

Going back to the example, the class B.__class__ is instantiated, passing its constructor the same 
three arguments that are passed to the default class constructor or to an extension's metaclass: name, 
bases, and namespace. 
It is easy to be confused by what exactly happens when using a metaclass, because we lose the 
absolute  distinction  between  classes  and  instances:  a  class  is  an  instance  of  a  metaclass  (a 
``metainstance''), but technically (i.e. in the eyes of the python runtime system), the metaclass is just 
a class, and the metainstance is just an instance. At the end of the class statement, the metaclass 
whose metainstance is used as a base class is instantiated, yielding a second metainstance (of the 
same metaclass). This metainstance is then used as a (normal, non-meta) class; instantiation of the 
class means calling the metainstance, and this will return a real instance. And what class is that an 
instance of? Conceptually, it is of course an instance of our metainstance; but in most cases the 
Python runtime system will  see  it  as  an instance  of  a  a  helper  class  used by the  metaclass  to 
implement its (non-meta) instances... 

Hopefully an example will make things clearer. Let's presume we have a metaclass MetaClass1. It's 
helper  class  (for  non-meta  instances)  is  callled  HelperClass1.  We  now  (manually)  instantiate 
MetaClass1 once to get an empty special base class: 
BaseClass1 = MetaClass1("BaseClass1", (), {})

We can now use BaseClass1 as a base class in a class statement: 
class MySpecialClass(BaseClass1):
    i = 1
    def f(s): pass

At this point, MySpecialClass is defined; it is a metainstance of MetaClass1 just like BaseClass1, 
and in fact the expression ``BaseClass1.__class__ == MySpecialClass.__class__ == MetaClass1'' 
yields true. 

We  are  now  ready  to  create  instances  of  MySpecialClass.  Let's  assume  that  no  constructor 
arguments are required: 
x = MySpecialClass()
y = MySpecialClass()
print x.__class__, y.__class__

The print  statement  shows that  x  and  y  are  instances  of  HelperClass1.  How did  this  happen? 
MySpecialClass  is  an  instance of  MetaClass1  (``meta''  is  irrelevant  here);  when an  instance is 
called, its __call__ method is invoked, and presumably the __call__ method defined by MetaClass1 
returns an instance of HelperClass1. 

http://www.python.org/cgi-bin/faqw.py?req=show&file=faq06.022.htp


Now let's see how we could use metaclasses -- what can we do with metaclasses that we can't easily 
do without them? Here's one idea: a metaclass could automatically insert trace calls for all method 
calls. Let's first develop a simplified example, without support for inheritance or other ``advanced'' 
Python features (we'll add those later). 
import types

class Tracing:
    def __init__(self, name, bases, namespace):
        """Create a new class."""
        self.__name__ = name
        self.__bases__ = bases
        self.__namespace__ = namespace
    def __call__(self):
        """Create a new instance."""
        return Instance(self)

class Instance:
    def __init__(self, klass):
        self.__klass__ = klass
    def __getattr__(self, name):
        try:
            value = self.__klass__.__namespace__[name]
        except KeyError:
            raise AttributeError, name
        if type(value) is not types.FunctionType:
            return value
        return BoundMethod(value, self)

class BoundMethod:
    def __init__(self, function, instance):
        self.function = function
        self.instance = instance
    def __call__(self, *args):
        print "calling", self.function, "for", self.instance, "with", args
        return apply(self.function, (self.instance,) + args)

Trace = Tracing('Trace', (), {})

class MyTracedClass(Trace):
    def method1(self, a):
        self.a = a
    def method2(self):
        return self.a

aninstance = MyTracedClass()

aninstance.method1(10)

print "the answer is %d" % aninstance.method2()

Confused already? The intention is to read this from top down. The Tracing class is the metaclass 
we're defining. Its structure is really simple. 

• The __init__ method is invoked when a new Tracing instance is created, e.g. the definition 
of class MyTracedClass later in the example. It simply saves the class name, base classes 
and namespace as instance variables.

• The __call__ method is  invoked when a  Tracing instance is  called,  e.g.  the  creation of 
aninstance later in the example. It returns an instance of the class Instance, which is defined 
next.



The class Instance is the class used for all instances of classes built using the Tracing metaclass, e.g. 
aninstance. It has two methods: 

• The __init__ method is invoked from the Tracing.__call__ method above to initialize a new 
instance. It saves the class reference as an instance variable. It uses a funny name because 
the user's instance variables (e.g. self.a later in the example) live in the same namespace.

• The __getattr__ method is invoked whenever the user code references an attribute of the 
instance that is not an instance variable (nor a class variable; but except for __init__ and 
__getattr__  there  are  no  class  variables).  It  will  be  called,  for  example,  when 
aninstance.method1 is referenced in the example, with self set to aninstance and name set to 
the string "method1".

The __getattr__ method looks the name up in the __namespace__ dictionary. If it isn't found, it 
raises an AttributeError exception. (In a more realistic example, it would first have to look through 
the base classes as well.) If it is found, there are two possibilities: it's either a function or it isn't. If 
it's not a function, it is assumed to be a class variable, and its value is returned. If it's a function, we 
have to ``wrap'' it in instance of yet another helper class, BoundMethod. 

The BoundMethod class is needed to implement a familiar feature: when a method is defined, it has 
an initial argument, self, which is automatically bound to the relevant instance when it is called. For 
example, aninstance.method1(10) is equivalent to method1(aninstance, 10). In the example if this 
call, first a temporary BoundMethod instance is created with the following constructor call: temp = 
BoundMethod(method1, aninstance); then this instance is called as temp(10). After the call, the 
temporary instance is discarded. 

• The  __init__  method  is  invoked  for  the  constructor  call  BoundMethod(method1, 
aninstance). It simply saves away its arguments.

• The __call__ method is invoked when the bound method instance is called, as in temp(10). 
It  needs  to  call  method1(aninstance,  10).  However,  even  though  self.function  is  now 
method1  and  self.instance  is  aninstance,  it  can't  call  self.function(self.instance,  args) 
directly,  because  it  should  work  regardless  of  the  number  of  arguments  passed.  (For 
simplicity, support for keyword arguments has been omitted.)

In order to be able to support arbitrary argument lists, the __call__ method first constructs a new 
argument tuple. Conveniently, because of the notation *args in __call__'s own argument list, the 
arguments  to  __call__  (except  for  self)  are  placed  in  the  tuple  args.  To  construct  the  desired 
argument  list,  we  concatenate  a  singleton  tuple  containing  the  instance  with  the  args  tuple: 
(self.instance,)  +  args.  (Note  the  trailing  comma used  to  construct  the  singleton  tuple.)  In  our 
example, the resulting argument tuple is (aninstance, 10). 

The intrinsic function apply() takes a function and an argument tuple and calls the function for it. In 
our  example,  we  are  calling  apply(method1,  (aninstance,  10))  which  is  equivalent  to  calling 
method(aninstance, 10). 

From  here  on,  things  should  come  together  quite  easily.  The  output  of  the  example  code  is 
something like this: 
calling <function method1 at ae8d8> for <Instance instance at 95ab0> with (10,)
calling <function method2 at ae900> for <Instance instance at 95ab0> with ()
the answer is 10

That was about the shortest meaningful example that I could come up with. A real tracing metaclass 
(for example, Trace.py discussed below) needs to be more complicated in two dimensions. 

First,  it  needs  to  support  more  advanced  Python  features  such  as  class  variables,  inheritance, 
__init__ methods, and keyword arguments. 

Second, it needs to provide a more flexible way to handle the actual tracing information; perhaps it 
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should be possible to write your own tracing function that gets called, perhaps it should be possible 
to enable and disable tracing on a per-class or per-instance basis, and perhaps a filter so that only 
interesting calls  are  traced;  it  should also  be  able  to  trace the  return  value  of  the  call  (or  the 
exception it raised if an error occurs). Even the Trace.py example doesn't support all these features 
yet. 

Real-life Examples
Have a  look at  some very preliminary examples that I  coded up to teach myself  how to write 
metaclasses: 

Enum.py 
This (ab)uses the class syntax as an elegant way to define enumerated types. The resulting 
classes are never instantiated -- rather, their class attributes are the enumerated values. For 
example: 

class Color(Enum):
    red = 1
    green = 2
    blue = 3
print Color.red

will print the string ``Color.red'', while ``Color.red==1'' is true, and ``Color.red + 1'' raise a 
TypeError exception. 

Trace.py 
The resulting  classes  work  much  like  standard  classes,  but  by  setting  a  special  class  or 
instance attribute __trace_output__ to point to a file, all calls to the class's methods are traced. 
It was a bit of a struggle to get this right. This should probably redone using the generic 
metaclass below. 

Meta.py 
A generic metaclass. This is an attempt at finding out how much standard class behavior can 
be mimicked by a metaclass. The preliminary answer appears to be that everything's fine as 
long as the class (or its clients) don't look at the instance's __class__ attribute, nor at the 
class's __dict__ attribute. The use of __getattr__ internally makes the classic implementation 
of __getattr__ hooks tough; we provide a similar hook _getattr_ instead. (__setattr__ and 
__delattr__ are not affected.) (XXX Hm. Could detect presence of __getattr__ and rename it.) 

Eiffel.py 
Uses  the  above  generic  metaclass  to  implement  Eiffel  style  pre-conditions  and  post-
conditions. 

Synch.py 
Uses the above generic metaclass to implement synchronized methods. 

Simple.py 
The example module used above. 

A pattern seems to be emerging: almost all these uses of metaclasses (except for Enum, which is 
probably more cute than useful) mostly work by placing wrappers around method calls. An obvious 
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problem with that is that it's not easy to combine the features of different metaclasses, while this 
would actually be quite useful: for example, I wouldn't mind getting a trace from the test run of the 
Synch module,  and it  would be interesting to add preconditions to it  as well.  This needs more 
research. Perhaps a metaclass could be provided that allows stackable wrappers... 

Things You Could Do With Metaclasses
There are lots of things you could do with metaclasses. Most of these can also be done with creative 
use of __getattr__, but metaclasses make it easier to modify the attribute lookup behavior of classes. 
Here's a partial list. 

• Enforce different inheritance semantics, e.g. automatically call base class methods when a 
derived class overrides

• Implement class methods (e.g. if the first argument is not named 'self')

• Implement that each instance is initialized with copies of all class variables

• Implement a different way to store instance variables (e.g. in a list  kept outside the the 
instance but indexed by the instance's id())

• Automatically wrap or trap all or certain methods 
• for tracing 

• for precondition and postcondition checking 
• for synchronized methods 
• for automatic value caching 

• When an attribute is a parameterless function, call it  on reference (to mimic it  being an 
instance variable); same on assignment

• Instrumentation: see how many times various attributes are used

• Different semantics for __setattr__ and __getattr__ (e.g. disable them when they are being 
used recursively)

• Abuse class syntax for other things

• Experiment with automatic type checking

• Delegation (or acquisition)

• Dynamic inheritance patterns

• Automatic caching of methods
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