Metaclass programming in Python

Pushing object-oriented programming to the next level
Level: Introductory

David Mertz (mertz@gnosis.cx), Developer, Gnosis Software, Inc.
Michele Simionato (mis6+@pitt.edu), Physicist, University of Pittsburgh

26 Feb 2003

Most readers are already familiar with the concepts of object-oriented programming: inheritance,
encapsulation, polymorphism. But the creation of objects of a given class, with certain parents, is
usually thought of as a "just so™ operation. It turns out that a number of new programming
constructs become either easier, or possible at all, when you can customize the process of object
creation. Metaclasses enable certain types of "aspect-oriented programming,” for example, you can
enhance classes with features like tracing capabilities, object persistence, exception logging, and
more.

Review of object-oriented programming

Let's start with a 30-second review of just what OOP is. In an object-oriented programming language, you can
define classes, whose purpose is to bundle together related data and behaviors. These classes can inherit some or
all of their qualities from their parents, but they can also define attributes (data) or methods (behaviors) of their
own. At the end of the process, classes generally act as templates for the creation of instances (at times also called
simply objects). Different instances of the same class will typically have different data, but it will come in the
same shape -- for example, the Emp loyee objects bob and jane both have a .salary and a
-room_number, but not the same room and salary as each other.

Some OOP languages, including Python, allow for objects to be introspective (also called reflective). That is, an
introspective object is able to describe itself: What class does the instance belong to? What ancestors does that
class have? What methods and attributes are available to the object? Introspection lets a function or method that
handles objects make decisions based on what kind of object it is passed. Even without introspection, functions
frequently branch based on instance data -- for example, the route to jane . room_number differs from that to
bob.room number because they are in different rooms. With introspection, you can also safely calculate the
bonus jane gets, while skipping the calculation for bob, for example, because jane has a .profit_share
attribute, or because bob is an instance of the subclass Hour ly(Employee).

A metaprogramming rejoinder

The basic OOP system sketched above is quite powerful. But there is one element brushed over in the description:
in Python (and other languages), classes are themselves objects that can be passed around and introspected. Since
objects, as stated, are produced using classes as templates, what acts as a template for producing classes? The
answer, of course, is metaclasses.

Python has always had metaclasses. But the machinery involved in metaclasses became much better exposed with
Python 2.2. Specifically, with version 2.2, Python stopped being a language with just one special (mostly hidden)
metaclass that created every class object. Now programmers can subclass the aboriginal metaclass type and
even dynamically generate classes with varying metaclasses. Of course, just because you can manipulate
metaclasses in Python 2.2, that does not explain why you might want to.

Moreover, you do not need to use custom metaclasses to manipulate the production of classes. A slightly less
brain-melting concept is a class factory: An ordinary function can return a class that was dynamically created
within the function body. In traditional Python syntax, you can write:

mailto:mertz@gnosis.cx

Python 1.5.2 (#0, Jun 27 1999, 11:23:01) [---]
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> def class_with_method(func):

class klass: pass

setattr(klass, func.__name__, func)

return klass

>>> def say_foo(self): print "foo"

>>> Foo = class_with_method(say_foo)
>>> foo = Foo()

>>> foo.say_foo()

foo

The factory function class_with_method () dynamically creates and returns a class that contains the
method/function passed into the factory. The class itself is manipulated within the function body before being
returned. The new module provides a more concise spelling, but without the same options for custom code within
the body of the class factory, for example:

>>> from new import classobj

>>> Foo2 = classobj("Foo2", (Foo,),{"bar”:lambda self:"bar"})
>>> Foo2().bar()

“bar”

>>> Foo2().say_foo()

foo

In all these cases, the behaviors of the class (Foo, Foo2) are not directly written as code, but are instead created
by calling functions at runtime, with dynamic arguments. And it should be emphasized that it is not merely the
instances that are so dynamically created, but the classes themselves.

Metaclasses: a solution looking for a problem?

Metaclasses are deeper magic than 99% of users should ever worry about. If you wonder whether
you need them, you don't (the people who actually need them know with certainty that they need
them, and don't need an explanation about why). -- Python Guru Tim Peters

Methods (of classes), like plain functions, can return objects. So in that sense it is obvious that class factories can
be classes just as easily as they can be functions. In particular, Python 2.2+ provides a special class called type
that is just such a class factory. Of course, readers will recognize type() as a less ambitious built-in function of
older Python versions -- fortunately, the behaviors of the old type () function are maintained by the type class
(in other words, type(obj) returns the type/class of the object obj). The new type class works as a class
factory in just the same way that the function new.classobj long has:

>>> X = type("X",(),{"foo":lambda self:"foo"})
>>> X, X(O)-foo()
(<class "__main__.X">, "foo")

But since type is now a (meta)class, you are free to subclass it:

>>> class ChattyType(type):
def _ new__ (cls, name, bases, dct):
print "Allocating memory for class'", name
return type._ new__(cls, name, bases, dct)
def __init__(cls, name, bases, dct):
print "Init"ing (configuring) class", name
super(ChattyType, cls).__init__(name, bases, dct)

>>> X = ChattyType("X",(),{"foo":lambda self:"foo"})
Allocating memory for class X

Init"ing (configuring) class X

>>> X, X(O)-foo()

(<class "__main__.X">, "foo")

The magic methods . _new () and .__init__ () are special, but in conceptually the same way they are
for any other class. The . ___init__ () method lets you configure the created object; the . __new__ () method
lets you customize its allocation. The latter, of course, is not widely used, but exists for every Python 2.2
new-style class (usually inherited but not overridden).

There is one feature of type descendents to be careful about; it catches everyone who first plays with
metaclasses. The first argument to methods is conventionally called c s rather than sel T, because the methods
operate on the produced class, not the metaclass. Actually, there is nothing special about this; all methods attach
to their instances, and the instance of a metaclass is a class. A non-special name makes this more obvious:

>>> class Printable(type):
def whoami(cls): print "I am a", cls._ _name__

>>> Foo = Printable("Foo",(.,.{})

>>> Foo.whoami()

I am a Foo

>>> Printable.whoami()

Traceback (most recent call last):
TypeError: unbound method whoami() [---]

All this surprisingly non-remarkable machinery comes with some syntax sugar that both makes working with
metaclasses easier, and confuses new users. There are several elements to the extra syntax. The resolution order
of these new variations is tricky though. Classes can inherit metaclasses from their ancestors -- notice that this is
not the same thing as having metaclasses as ancestors (another common confusion). For old-style classes,
defining a global _metaclass_ variable can force a custom metaclass to be used. But most of the time, and the
safest approach, is to set a _metaclass_ class attribute for a class that wants to be created via a custom
metaclass. You must set the variable in the class definition itself since the metaclass is not used if the attribute is
set later (after the class object has already been created). For example:

>>> class Bar:
__metaclass__ = Printable
def foomethod(self): print "foo"

>>> Bar.whoami ()

I am a Bar

>>> Bar() .foomethod()
foo

Solving problems with magic

So far, we have seen the basics of metaclasses. But putting metaclasses to work is more subtle. The challenge
with utilizing metaclasses is that in typical OOP design, classes do not really do much. The inheritance structure
of classes is useful to encapsulate and package data and methods, but it is typically instances that one works with
in the concrete.

There are two general categories of programming tasks where we think metaclasses are genuinely valuable.

The first, and probably more common category is where you do not know at design time exactly what a class
needs to do. Obviously, you will have some idea about it, but some particular detail might depend on information
that is not available until later. "Later" itself can be of two sorts: (a) When a library module is used by an
application; (b) At runtime when some situation exists. This category is close to what is often called
"Aspect-Oriented Programming” (AOP). We'll show what we think is an elegant example:

% cat dump.py

#1/usr/bin/python

import sys

if len(sys.argv) > 2:
module, metaklass = sys.argv[1:3]
m = __import__(module, globals(), locals(), [metaklass])
__metaclass__ = getattr(m, metaklass)

class Data:
def __init__ (self):
self_.num = 38

self_Ist = ["a","b","c"]
self.str = "spam”
dumps lambda self: “self”

_str__ lambda self: self.dumps(Q)

data = Data(Q)
print data

% dump.py
<__main__.Data instance at 1686a0>

As you would expect, this application prints out a rather generic description of the data object (a conventional
instance object). But if runtime arguments are passed to the application, we can get a rather different result:

% dump.py gnosis.magic MetaXMLPickler
<?xml version="1.0"?>
<IDOCTYPE PyObject SYSTEM "PyObjects.dtd">
<PyObject module="__main__" class="Data" i1d="720748">
<attr name="Ist" type="list" id="980012" >
<item type="'string" value="a" />
<item type="string" value="b" />
<item type="'string" value="c" />
</attr>
<attr name="num" type="numeric" value="38" />
<attr name="str" type="'string" value="spam" />
</PyObject>

The particular example uses the serialization style of gnosis.xml .pickle, but the most current
ghosis.magic package also contains metaclass serializers MetaYamlDump, MetaPyPickler, and
MetaPrettyPrint. Moreover, a user of the dump . py "application™ can impose the use of any "MetaPickler"”
desired, from any Python package that defines one. Writing an appropriate metaclass for this purpose will look

something like:

class MetaPickler(type):
"Metaclass for gnosis.xml.pickle serialization"”
def __init__(cls, name, bases, dict):
from gnosis.xml_pickle import dumps
super(MetaPickler, cls).__init___(name, bases, dict)
setattr(cls, "dumps®, dumps)

The remarkable achievement of this arrangement is that the application programmer need have no knowledge
about what serialization will be used -- nor even whether serialization or some other cross-sectional capability
will be added at the command-line.

Perhaps the most common use of metaclasses is similar to that of MetaPicklers: adding, deleting, renaming, or
substituting methods for those defined in the produced class. In our example, a "native" Data.dump() method
is replaced by a different one from outside the application, at the time the class Data is created (and therefore in
every subsequent instance).

More ways to solve problems with magic

There is a programming niche where classes are often more important than instances. For example, declarative
mini-languages are Python libraries whose program logic is expressed directly in class declarations. David
examines them in his article "Create declarative mini-languages". In such cases, using metaclasses to affect the
process of class creation can be quite powerful.

One class-based declarative framework is gnosis.xml .val idity. Under this framework, you declare a
number of "validity classes" that express a set of constraints about valid XML documents. These declarations are
very close to those contained in DTDs. For example, a "dissertation” document can be configured with the code:

from gnosis.xml_validity import *

class figure(EMPTY): pass

class _mixedpara(Or): _disjoins = (PCDATA, figure)
class paragraph(Some): _type = _mixedpara

class title(PCDATA): pass

class _paras(Some): _type = paragraph

class chapter(Seq): _order = (title, _paras)

class dissertation(Some): _type = chapter

If you try to instantiate the dissertation class without the right component subelements, a descriptive
exception is raised; likewise for each of the subelements. The proper subelements will be generated from simpler
arguments when there is only one unambiguous way of "lifting" the arguments to the correct types.

Even though validity classes are often (informally) based on a pre-existing DTD, instances of these classes print
themselves as unadorned XML document fragments, for example:

>>> from simple_diss import *

>>> ch = LiftSeq(chapter, ("1t Starts","When it began®))
>>> print ch

<chapter><title>Ilt Starts</title>

<paragraph>When it began</paragraph>

</chapter>

By using a metaclass to create the validity classes, we can generate a DTD out of the class declarations
themselves (and add an extra method to the classes while we do it):

>>> from gnosis.magic import DTDGenerator, \
import_with_metaclass, \

- from_import

>>> d = import_with_metaclass("simple_diss",DTDGenerator)

>>> from_import(d, "***)

>>> ch = LiftSeq(chapter, ("It Starts®,"When it began®))

>>> print ch.with_internal_subset()

<?xml version="1.0"7?>

<IDOCTYPE chapter [

<VELEMENT figure EMPTY>

<IELEMENT dissertation (chapter)+>

<IELEMENT chapter (title,paragraph+)>

<IELEMENT title (#PCDATA)>

<IELEMENT paragraph ((#PCDATA]figure))+>

1>

<chapter><title>lt Starts</title>

<paragraph>When it began</paragraph>

</chapter>

The package gnosis.xml .val idity knows nothing about DTDs and internal subsets. Those concepts and
capabilities are introduced entirely by the metaclass DTDGenerator, without any change made to either
gnosis.xml.validity orsimple_diss.py. DTDGenerator does not substitute its own
.__str__ () method into classes it produces -- you can still print the unadorned XML fragment -- but it a
metaclass could easily modify such magic methods.

Meta conveniences

The package gnosis.magic contains several utilities for working with metaclasses, as well as some sample
metaclasses you can use in aspect-oriented programming. The most important of these utilities is
import_with_metaclass(). This function, utilized in the above example, lets you import a third-party
module, but create all the module classes using a custom metaclass rather than type. Whatever new capability
you might want to impose on that third-party module can be defined in a metaclass that you create (or get from
somewhere else altogether). gnosis.magic contains some pluggable serialization metaclasses; some other
package might contain tracing capabilities, or object persistence, or exception logging, or something else.

The import_with_metclass() function illustrates several qualities of metaclass programming:

def import_with_metaclass(modname, metaklass):
"Module importer substituting custom metaclass"
class Meta(object): _ metaclass__ = metaklass
dct {"__module__ " :modname}
mod = __ import__(modname)

for key, val in mod.__dict__.items():
if inspect.isclass(val):
setattr(mod, key, type(key,(val,Meta),dct))
return mod

One notable style in this function is that an ordinary class Meta is produced using the specified metaclass. But
once Meta is added as an ancestor, its descendent is also produced using the custom metaclass. In principle, a
class like Meta could carry with it both a metaclass producer and a set of inheritable methods -- the two aspects
of its bequest are orthogonal.

Resources

e A useful book on metaclasses is Putting Metaclasses to Work by Ira R. Forman and Scott Danforth
(Addison-Wesley; 1999).

e For metaclasses in Python specifically, Guido van Rossum'’s essay, "Unifying types and classes in Python
2.2" is useful as well.

e Also by David on developerWorks, read:

o "Guide to Python introspection”
o "Create declarative mini-languages”
o "XML Matters: Enforcing validity with the gnosis.xml.validity library"

e Don't know Tim Peters? You should! Begin with Tim's wiki page and end with reading
news:comp.lang.python more regularly.

e New to AOP? You may find this "Introduction to Aspect-Oriented Programming™ (PDF) by Ken Wing
Kuen Lee of the Hong Kong University of Science and Technology interesting.

e Gregor Kiczales and his team at Xerox PARC coined the term aspect-oriented programming in the 1990s
and championed it as a way to allow software programmers to spend more time writing code and less time
correcting it.

e "Connections between Demeter/Adaptive Programming and Aspect-Oriented Programming (AOP)" by
Karl J. Lieberherr also describes AOP.

e You'll also find subject-oriented programming interesting. As described by the folks at IBM Research, it's
essentially the same thing as aspect-oriented programming.

e Find and download the Gnosis utils, mentioned several times in this article, at David's site.

e Find more resources for Linux developers in the developerWorks Linux zone.

About the authors

David Mertz thought his brain would melt when he wrote about continuations or semi-coroutines, but he put the
gooey mess back in his skull cavity and moved on to metaclasses. David may be reached at mertz@gnosis.cx; his
life pored over at his personal Web page. Suggestions and recommendations on this, past, or future columns are

welcome. Learn about his forthcoming book, Text Processing in Python.

Michele Simionato is a plain, ordinary, theoretical physicist who was driven to Python by a quantum
fluctuation that could well have passed without consequences had he not met David Mertz. He will let
his readers judge the final outcome. Michele can be reached at mis6+@pitt.edu.

mailto:mertz@gnosis.cx

