
Tips for learning ActionScript 3.0

ActionScript 3.0 is a powerful object-oriented language that represents a new programming model
for the Flash Player runtime. If you are already familiar with ActionScript 1.0 or 2.0, you should be
aware of some language differences as you develop your first application using ActionScript 3.0.

Note: For more information, refer also to the list of differences between ActionScript 2.0 and
ActionScript 3.0 in the Flex 2.0 Language Reference.

To help ease the transition to ActionScript 3.0, I've compiled the following list of tips and common
issues you might encounter during development.

• Declare types for all variables, parameters, and return values. Declaring a type for all
variables, parameters, and return values is not required, but it is considered best practice. It
will help the compiler give you more helpful error messages. It also aids runtime
performance because the virtual machine will know the types you're working with ahead of
time. In fact, it's so important that we've made it a warning by default.

• Note that declarations with no access specifier now default to package internal,
not public. The default access specifier for declarations is now internal instead of
public, meaning that the definition is visible only to the package containing the definition,
not to all code. This is consistent with other languages such as Java. Because ActionScript
2.0 declarations defaulted to public, this change will likely be a common pitfall, so
always put an access specifier on your declarations to make the intent crystal-clear. To
encourage this best practice, the ActionScript 3.0 compiler will output a warning when no
access specifier is used.

• Note that classes are sealed by default, meaning properties cannot be added
dynamically at runtime. Classes can now be either dynamic or sealed. Dynamic classes can
add additional dynamic properties at runtime; sealed classes cannot. Sealed classes conserve
memory because no internal hash table is needed to store dynamic properties, and the
compiler can provide better error feedback. The declaration class Foo is sealed. To
declare a class dynamic, use the dynamic keyword—for example, dynamic class
Foo.

• Use package declarations to put a class definition into a package. The package
keyword is new to ActionScript 3.0.

ActionScript 2.0 code:
class mx.controls.Button { ... }

ActionScript 3.0 code:
package mx.controls { class Button { .. } }

As in ActionScript 2.0, a public class must be in a file with the same name as the class.
Multiple classes may be declared in a single file, but only one class may be public, and its
name must match the filename.

• Import classes, even if references to the class are fully qualified. To use a class
MyPackage.MyClass, you must import it with:
import MyPackage.MyClass;

This is true even if all references are fully qualified, that is using the full name

http://www.adobe.com/go/AS2toAS3
http://www.adobe.com/go/AS2toAS3
http://www.adobe.com/go/AS3LR

MyPackage.MyClass. In ActionScript 3.0, the import statement indicates that you
want to use a class definition from another package, whereas in ActionScript 2.0 it was only
used to create shorthand names. In ActionScript 3.0, the full class name is only used for
disambiguation, and is no longer a substitute for the import statement.

It is also possible to import all of the definitions in a package using the * wildcard character:
import MyPackage.*;

It is considered best practice to import definitions individually, because it results in less
ambiguity about which definitions your code uses.

• Always mark method overrides. The override keyword helps avoid common pitfalls of
overriding methods, such as specifying the wrong name or method signature for an
overridden method, or when the name of the overridden method changes. It also makes it
clear when looking at the code that a method is being overridden. Because it knows whether
a method is intended to override another, the compiler can perform more useful
validation. The override keyword in ActionScript 3.0 is inspired by the C# override
keyword.

• Declare return types in your functions. It is considered best practice to declare a return
type for a function. If you omit a return type, a warning will be displayed. This is done for
type safety, so that you don't accidentally leave a return type off and get the default return
type of Object. If a function doesn't return any value, declare its return type as void.

• Note that delegates are now built into the language, making event dispatching easier. In
ActionScript 2.0, routing an event to a method required use of the mx.utils.Delegate
class or other workarounds:
import mx.utils.Delegate;
myButton.addEventListener("click", Delegate.create(this, onClick));

In ActionScript 3.0, a reference to a method automatically remembers the object instance
from which it was extracted. This is called a method closure. In essence, it is an automatic
delegate. So, the code can simply be written as:
myButton.addEventListener("click", onClick);

• Note that dereferencing a null or undefined reference will now throw an exception.
Dereferencing null or undefined in legacy ActionScript was ignored and evaluated to
undefined. Now, a TypeError exception will be thrown. Watch out for code that casually
dereferenced null or undefined, and depended on the silent failure behavior. The new
exception-throwing behavior is compliant with the ECMAScript specification.

• Use the -verbose-stacktraces and -debug options. Compiling with the
command-line options -verbose-stacktraces and -debug causes filenames and line
numbers to appear in the Flash Player runtime alerts. When a runtime error occurs, a dialog
box describes the error and lists the call stack where it occurred. Using the -verbose-
stacktraces and -debug options can make it easier to locate the source of an error in
your code.

• Explicitly declare properties to be bindable. Properties are no longer bindable by default.
You must declare them to be bindable by using the [Bindable] metadata tag.

• Note that the Flash Player API has been reorganized into packages. Formerly all classes
and functions in the Flash Player API were global. Now there are many packages such as
flash.display, flash.events, flash.ui, and so on. For example, MovieClip is now
flash.display.MovieClip and getTimer and setInterval have been moved
to the flash.utils package.

• Use the new Timer class instead of setInterval/setTimeout. The new Timer class

provides a cleaner mechanism for timer events than the setInterval and setTimeout
functions. The new Timer class has a number of advantages over setInterval, such as
not having to deal with interval ID numbers, and a more modern, object-oriented interface.
We regard using Timer instead of setInterval and setTimeout as a best practice.

• Be sure to subclass events. Events are now strongly typed, and must be subclasses of the
new Event base class. The new Event class makes the event system clearer and more
efficient. However, this also means that you can no longer use a generic instance of class
Object when dispatching events, and you cannot use the object literal shorthand—for
example, {type: 'customEvent' }.

Instead of creating a generic Object class, you now need to use the Event class (for
example, dispatchEvent(new Event ('myCustomEventType'))). You need
to subclass Event if you want to pass additional properties. The motivation for not using
Object is to achieve greater type safety and efficiency.

• Note that visual elements must extend DisplayObject, and you can define them like
any other class. Components are now created dynamically with new and added to the
display list using addChild. As a result, createChild has been deprecated. Visual
entities, including TextField, can be instantiated like any other object and simply added
to a display list using addChild or addChildAt. Note that this means certain APIs are
gone, such as createEmptyMovieClip and createTextField. In order to create a
new TextField you use new TextField instead of createTextField.

• Note that E4X (ECMAScript for XML) is now the recommended means of
manipulating XML in Flash. E4X is far more powerful and better integrated into the
language than the legacy Flash XML class, and provides a host of new capabilities. The
legacy Flash XML class is still available for use. If you prefer the legacy XML API,
renamed to XMLDocument, it is still available in the flash.xml package.

• Use the toXMLString method when using E4X. The toString method does not
necessarily return the complete XML markup for the object; to get that, use the
toXMLString method. The toString method returns a convenient string value for the
XML object. It does not necessarily serialize the XML object in its entirety. To get the XML
markup, call the toXMLString method.

• Note that the for...in loop will no longer enumerate properties and methods
declared by a class. It only enumerates dynamic properties of an object. ActionScript 3.0
features a new and more advanced mechanism for object introspection, called
describeType. Use it to introspect objects in ActionScript 3.0.

• Note that the root object of a SWF file can now be an instance of a custom class of your
choice. In ActionScript 2.0, the root object of a SWF file was always of class MovieClip.
In ActionScript 3.0, it may be any subclass of Sprite. You can set a class definition to be the
DocumentRoot of a SWF file. When it's loaded, the SWF file will instantiate that class to
serve as its root object.

Special thanks go out to our developer community for helping suggest entries for this article. The
list presented here is by no means exhaustive, but it's a start that will help you hit the ground
running with ActionScript 3.0. If you are familiar with other object-oriented languages, you may
find these tips little more than a refresher—skills you've learned elsewhere can immediately be put
to use in ActionScript 3.0.

If you are new to object-oriented programming and ActionScript 3.0, then these tips will come in
handy. For you, this is definitely a list to pin up in plain sight. Happy coding!

	Tips for learning ActionScript 3.0

