
Expresión regular
De Wikipedia, la enciclopedia libre

Su utilidad más obvia es la de describir un conjunto de cadenas, lo que resulta de utilidad en editores de texto y aplicaciones para buscar y manipular
textos. Muchos lenguajes de programación admiten el uso de expresiones regulares con este fin. Por ejemplo, Perl tiene un potente motor de
expresiones regulares directamente incluido en su sintaxis. Las herramientas proporcionadas por las distribuciones de Unix (incluyendo el editor sed y
el filtro grep) fueron las primeras en popularizar el concepto de expresión regular.

Tabla de contenidos

1 Conceptos básicos
2 Expresiones regulares en teoría de lenguajes formales
3 Aplicaciones
4 Las expresiones regulares en programación
5 Descripción de la expresiones regulares

5.1 El Punto "."
5.2 La barra inversa o contrabarra"\"
5.3 Los corchetes "[]"
5.4 La barra "|"
5.5 El signo de dólar "$"
5.6 El acento circunflejo "^"
5.7 Los paréntesis"()"
5.8 El signo de pregunta "?"
5.9 Las llaves "{}"
5.10 El asterisco "*"
5.11 El signo de suma "+"
5.12 Grupos anónimos

6 Véase también
7 Enlaces externos

Conceptos básicos

Una expresión regular, a menudo llamada también patrón, es una expresión que describe un conjunto de cadenas sin enumerar sus elementos. Por
ejemplo, el grupo formado por las cadenas Handel, Händel y Haendel se describe mediante el patrón "H(a|ä|ae)ndel". La mayoría de las
formalizaciones proporcionan los siguientes constructores:Una expresión regular es una forma de representar a los lenguajes regulares (finitos o
infinitos) y se construye utilizando caracteres del alfabeto sobre el cual se define el lenguaje. Específicamente, las expresiones regulares se construyen
utilizando los operadores [[unión concatenación y clausura de Kleene.

alternación
Una barra vertical separa las alternativas. Por ejemplo, "marrón|castaño" casa con marrón o castaño.

cuantificación
Un cuantificador tras un carácter especifica la frecuencia con la que éste puede ocurrir. Los cuantificadores más comunes son +, ? y *:
+

El signo más indica que el carácter al que sigue debe aparecer al menos una vez. Por ejemplo, "ho+la" describe el conjunto infinito hola,
hoola, hooola, hoooola, etcétera.

?
El signo de interrogación indica que el carácter al que sigue puede aparecer como mucho una vez. Por ejemplo, "ob?scuro" casa con
oscuro y obscuro.

*
El asterisco indica que el carácter al que sigue puede aparecer cero, una, o más veces. Por ejemplo, "0*42" casa con 42, 042, 0042, 00042,
etcétera.

agrupación
Los paréntesis pueden usarse para definir el ámbito y precedencia de los demás operadores. Por ejemplo, "(p|m)adre" es lo mismo que
"padre|madre", y "(des)?amor" casa con amor y con desamor.

Los constructores pueden combinarse libremente dentro de la misma expresión, por lo que "H(ae?|ä)ndel" equivale a "H(a|ae|ä)ndel".

La sintaxis precisa de las expresiones regulares cambia según las herramientas y aplicaciones consideradas, y se describe con más detalle a
continuación.

Expresiones regulares en teoría de lenguajes formales

Las expresiones regulares están formadas por constantes y operadores y denotan conjuntos de palabras llamados conjuntos regulares. Dado un alfabeto
finito S�, se definen las siguientes constantes:

(conjunto vacío) Ø� que denota el conjunto Ø�1.
(palabra vacía) e� que denota el conjunto {e�}2.
(carácter del alfabeto) a elemento de S� que denota el conjunto {"a"}3.

y las siguientes operaciones:

(unión) r|s que denota la unión de R y S, donde R y S son respectivamente los conjuntos denotados por las expresiones r y s.1.
(concatenación) rs que denota el conjunto { a�ß� | a� en R y ß� en S }, donde R y S representan respectivamente los conjuntos denotados por las
expresiones r y s. Por ejemplo, la expresión "(ab|c)(d|ef)" denota el conjunto {"ab", "c"}{"d", "ef"} = {"abd", "abef", "cd", "cef"}.

2.

(clausura de Kleene) r* que denota el más pequeño conjunto que extiende a R, contiene e� y está cerrado por concatenación de palabras, donde R
es el conjunto denotado por la expresión r. r* es también el conjunto de todas las palabras que pueden construirse por concatenación de cero o
más ocurrencias de R. Por ejemplo, "(ab|c)*" contiene las palabras e�, "ab", "c", "abab", "abc", "cab", "cc", "ababab", etcétera.

3.

Para reducir al mínimo el número de paréntesis necesarios para escribir una expresión regular, se asume que la clausura de Kleene es el operador de
mayor prioridad, seguido de concatenación y luego la unión de conjuntos. Los paréntesis solo se incluyen para eliminar ambigüedades. Por ejemplo,
"(ab)c" se escribe igualmente como "abc" y "U(b(c*))" puede escribirse "Ubc*".

Aplicaciones

Numerosos editores de texto y otras utilidades (especialmente en el sistema operativo UNIX), como por ejemplo sed y awk, utilizan expresiones
regulares para, por ejemplo, buscar palabras en el texto y reemplazarlas con alguna otra cadena de caracteres.

Las expresiones regulares en programación

Nota: Para el entendimiento completo de esta sección es necesario poseer conocimientos generales acerca de lenguajes de programación o
programación en general.

En el área de la programación las expresiones regulares son un método por medio del cual se pueden realizar búsquedas dentro de cadenas de
caracteres. Sin importar si la búsqueda requerida es de dos caracteres en una cadena de 10 o si es necesario encontrar todas las apariciones de un patrón
definido de caracteres en un archivo de millones de caracteres, las expresiones regulares proporcionan una solución para el problema. Adicionalmente,
un uso derivado de la búsqueda de patrones es la validación de un formato específico en una cadena de caracteres dada, como por ejemplo fechas o
identificadores.

Para poder utilizar las expresiones regulares al programar es necesario tener acceso a un motor de búsqueda con la capacidad de utilizarlas. Es posible
clasificar los motores disponibles en dos tipos: Motores para el programador y Motores para el usuario final.

Motores para el usuario final: Son programas que permiten realizar búsquedas sobre el contenido de un archivo o sobre un texto extraído y colocado
en el programa. Están diseñados para permitir al usuario realizar búsquedas avanzadas usando este mecanismo, sin embargo es necesario aprender a
redactar expresiones regulares adecuadas para poder utilizarlos eficientemente. Éstos son algunos de los programas disponibles:

grep: Programa de los sistemas operativos Unix/Linux
PowerGrep: versión de grep para los sistemas operativos Windows
RegexBuddy: Ayuda a crear las expresiones regulares en forma interactiva y luego le permite al usuario usarlas y guardarlas.
EditPad Pro: Permite realizar búsquedas con expresiones regulares sobre archivos y las muestra por medio de código de colores para facilitar su
lectura y comprensión.

Motores para el programador: Permiten automatizar el proceso de búsqueda de modo que sea posible utilizarlo muchas veces para un propósito
específico. Estas son algunas de las herramientas de programación disponibles que ofrecen motores de búsqueda con soporte a expresiones regulares:

Java: Existen varias librerías hechas para java que permiten el uso de RegEx, y Sun planea dar soporte a estas desde el SDK
JavaScript: A partir de la versión 1.2 (ie4+, ns4+) JavaScript tiene soporte integrado para expresiones regulares, lo que significa que las
validaciones que se realizan normalmente en una página web podrían simplificarse grandemente si el programador supiera utilizar esta
herramienta.
Perl: Es el lenguaje que hizo crecer a las expresiones regulares en el ámbito de la programación hasta llegar a lo que son hoy en día.
PCRE: Librería de ExReg para C, C++ y otros lenguajes que puedan utilizar librerías dll (Visual Basic 6 por ejemplo).
PHP: Tiene dos tipos diferentes de expresiones regulares disponibles para el programador.
Python: Lenguaje de "scripting" popular con soporte a Expresiones Regulares.
.Net Framework: Provee un conjunto de clases mediante las cuales es posible utilizar expresiones regulares para hacer búsquedas, reemplazar
cadenas y validar patrones.

Nota: De las herramientas mencionadas con anterioridad se utilizan el EditPad Pro y el .Net Framework para dar ejemplos, aunque es posible utilizar
las expresiones regulares con cualquier combinación de las herramientas mencionadas. Aunque en general las Expresiones Regulares utilizan un
lenguaje común en todas las herramientas, las explicaciones prácticas acerca de la utilización de las herramientas y los ejemplos de código deben ser
interpretados de forma diferente. También es necesario hacer notar que existen algunos detalles de sintaxis de las expresiones regulares que son
propietarios del .Net Framework que se utilizan en forma diferente en las demás herramientas de programación. Cuando estos casos se den se hará
notar en forma explícita para que el lector pueda buscar información respecto a estos detalles en fuentes adicionales. En el futuro se incluirán
adicionalmente ejemplos de otras herramientas y lenguajes de programación.

Expresiones Regulares como motor de búsqueda

Las expresiones regulares permiten encontrar porciones específicas de texto dentro de una cadena más grande de caracteres. Así, si es necesario
encontrar el texto "lote" en la expresión "el ocelote salto al lote contiguo" cualquier motor de búsqueda sería capaz de efectuar esta labor. Sin embargo,
la mayoría de los motores de búsqueda encontrarían también el fragmento "lote" de la palabra "ocelote", lo cual podría no ser el resultado esperado.
Algunos motores de búsqueda permiten adicionalmente especificar que se desea encontrar solamente palabras completas, solucionando este problema.
Las expresiones regulares permiten especificar todas estas opciones adicionales y muchas otras sin necesidad de configurar opciones adicionales, sino

utilizando el mismo texto de búsqueda como un lenguaje que permite enviarle al motor de búsqueda exactamente lo que deseamos encontrar en todos
los casos, sin necesidad de activar opciones adicionales al realizar la búsqueda.

Expresiones Regulares como lenguaje

Para especificar opciones dentro del texto a buscar se utiliza un lenguaje o convención mediante el cual se le transmite al motor de búsqueda el
resultado que se desea obtener. Este lenguaje le da un significado especial a una serie de caracteres. Por lo tanto cuando el motor de búsqueda de
Expresiones Regulares encuentre estos caracteres no los buscará en el texto en forma literal, sino que buscará lo que los caracteres significan. A estos
caracteres se les llama algunas veces "meta-caracteres". A continuación se listan los principales meta-caracteres y su función y como los interpreta el
motor de Expresiones Regulares.

Descripción de la expresiones regulares

El Punto "."

El punto es interpretado por el motor de búsqueda como cualquier otro carácter excepto los caracteres que representan un salto de línea, a menos que se
le especifique esto al motor de Expresiones Regulares. Por lo tanto si esta opción se deshabilita en el motor de búsqueda que se utilice, el punto le dirá
al motor que encuentre cualquier carácter incluyendo los saltos de línea. En la herramienta EditPad Pro esto se hace por medio de la opción "punto
corresponde a nueva línea" en las opciones de búsqueda. En .Net Framework se utiliza la opción RegexOptions. Singleline al efectuar la búsqueda o
crear la expresión regular.

El punto se utiliza de la siguiente forma: Si se le dice al motor de RegEx que busque "g.t" en la cadena "el gato de piedra en la gótica puerta de
getisboro goot" el motor de búsqueda encontrará "gat", "gót" y por último "get". Nótese que el motor de búsqueda no encuentra "goot"; esto es porque
el punto representa un solo carácter y únicamente uno. Si es necesario que el motor encuentra también la expresión "goot", será necesario utilizar
repeticiones, las cuales se explican más adelante.

Aunque el punto es muy útil para encontrar caracteres que no conocemos, es necesario recordar que corresponde a cualquier carácter y que muchas
veces esto no es lo que se requiere. Es muy diferente buscar cualquier carácter que buscar cualquier carácter alfanumérico o cualquier dígito o
cualquier no-dígito o cualquier no-alfanumérico. Se debe tomar esto en cuenta antes de utilizar el punto y obtener resultados no deseados.

La barra inversa o contrabarra"\"

Se utiliza para "marcar" el siguiente carácter de la expresión de búsqueda de forma que este adquiera un significado especial o deje de tenerlo. O sea, la
barra inversa no se utiliza nunca por sí sola, sino en combinación con otros caracteres. Al utilizarlo por ejemplo en combinación con el punto "\." este
deja de tener su significado normal y se comporta como un carácter literal.

De la misma forma, cuando se coloca la barra inversa seguida de cualquiera de los caracteres especiales que discutiremos a continuación, estos dejan
de tener su significado especial y se convierten en caracteres de búsqueda literal.

Como ya se mencionó con anterioridad, la barra inversa también puede darle significado especial a caracteres que no lo tienen. A continuación hay una
lista de algunas de estas combinaciones:

\t - Representa un tabulador.
\r - Representa el "regreso al inicio" o sea el lugar en que la línea vuelve a iniciar.
\n - Representa la "nueva línea" el carácter por medio del cual una línea da inicio. Es necesario recordar que en Windows es necesaria una
combinación de \r\n para comenzar una nueva línea, mientras que en Unix solamente se usa \n.
\a - Representa una "campana" o "beep" que se produce al imprimir este carácter.
\e - Representa la tecla "Esc" o "Escape"
\f - Representa un salto de página
\v - Representa un tabulador vertical
\x - Se utiliza para representar caracteres ASCII o ANSI se conoce su código. De esta forma, si se busca el símbolo de derechos de autor y la
fuente en la que se busca utiliza el conjunto de caracteres Latin-1 es posible encontrarlo utilizando "\xA9".
\u - Se utiliza para representar caracteres Unicode si se conoce su código. "\u00A2" representa el símbolo de centavos. No todos los motores de
Expresiones Regulares soportan Unicode. El .Net Framework lo hace, pero el EditPad Pro no, por ejemplo.
\d - Representa un dígito del 0 al 9.
\w - Representa cualquier carácter alfanumérico.
\s - Representa un espacio en blanco.
\D - Representa cualquier carácter que no sea un dígito del 0 al 9.
\W - Representa cualquier carácter no alfanumérico.
\S - Representa cualquier carácter que no sea un espacio en blanco.
\A - Representa el inicio de la cadena. No un carácter sino una posición.
\Z - Representa el final de la cadena. No un carácter sino una posición.
\b - Marca el inicio y el final de una palabra.
\B - Marca la posición entre dos caracteres alfanuméricos o dos no-alfanuméricos.

Nota: La utilidad Charmap.exe de Windows permite encontrar los códigos ASCII/ANSI/UNICODE para utilizarlos en Expresiones Regulares.

Los corchetes "[]"

La función de los corchetes en el lenguaje de las expresiones regulares es representar "clases de caracteres", o sea, agrupar caracteres en grupos o
clases. Son útiles cuando es necesario buscar uno de un grupo de caracteres. Dentro de los corchetes es posible utilizar el guión "-" para especificar
rangos de caracteres. Adicionalmente, los metacaracteres pierden su significado y se convierten en literales cuando se encuentran dentro de los
parentesis cuadrados. Por ejemplo, como vimos en la entrega anterior "\d" nos es útil para buscar cualquier carácter que represente un dígito. Sin
embargo esta denominación no incluye el punto "." que divide la parte decimal de un número. Para buscar cualquier carácter que representa un dígito o

un punto podemos utilizar la expresión regular "[\d.]". Como se hizo notar anteriormente, dentro de los corchetes, el punto representa un carácter literal
y no un metacaracter, por lo que no es necesario antecederlo con la barra inversa. El único carácter que es necesario anteceder con la barra inversa
dentro de los parentesis cuadrados es la propia barra inversa. La expresión regular "[\dA-Fa-f]" nos permite encontrar dígitos hexadecimales. Los
corchetes nos permiten también encontrar palabras aún si están escritas de forma errónea, por ejemplo, la expresión regular "expresi[oó]n" nos permite
encontrar en un texto al palabra "expresión" aunque se haya escrito con o sin acento. Es necesario aclarar que sin importar cuantos caracteres se
introduzcan dentro del grupo por medio de los corchetes, el grupo solo le dice al motor de búsqueda que encuentre un solo carácter a la vez, es decir,
que "expresi[oó]n" no encontrará "expresioon" o "expresioón".

La barra "|"

Nos sirve para indicar una de varias opciones. Por ejemplo, la expresión regular "a|e" encontrará cualquier "a" o "e" dentro del texto. La expresión
regular "este|oeste|norte|sur" permitirá encontrar cualquiera de los nombres de los puntos cardinales. La barra se utiliza comúnmente en conjunto con
otros caracteres especiales.

El signo de dólar "$"

Representa el final de la cadena de caracteres o el final de la línea, si se utiliza el modo multi-línea. No representa un caractér en especial sino una
posición. Si se utiliza la expresión regular "\.$" el motor encontrará todos los lugares donde un punto finalice la línea, lo que es útil para avanzar entre
párrafos.

El acento circunflejo "^"

Este caractér tiene una doble funcionalidad, que difiere cuando se utiliza individualmente y cuando se utiliza en conjunto con otros caracteres
especiales. En primer lugar su funcionalidad como carácter individual; de manera similar que el signo de dólar "$" representa el inicio de la cadena, de
forma que si se utiliza la expresión regular "^[a-z]" el motor encontrará todos los párrafos que den inicio sin utilizar la letra mayúscula. Cuando se
utiliza en conjunto con los corchetes de la siguiente forma "[^\w]" permite encontrar cualquier carácter que NO se encuentre dentro del grupo
indicado. La expresión indicada permite encontrar, por ejemplo, cualquier carácter que no sea alfanumérico o un espacio, o sea, busca todos los
símbolos de puntuación y demás caracteres especiales. La utilización en conjunto de los caracteres especiales "^" y "$" permite realizar validaciones en
forma sencilla. Por ejemplo "^\d$" permite asegurar que la cadena a verificar representa un único dígito, "^\d\d/\d\d/\d\d\d\d$" permite validar una
fecha en formato corto, aunque no permite verificar si es una fecha válida, ya que 99/99/9999 también sería válido en este formato; la validación
completa de una fecha también es posible mediente expresiones regulares, como se ejemplifica más adelante..

Los paréntesis"()"

De forma similar que los corchetes, los paréntesis sirven para agrupar caracteres, sin embargo existen varias diferencias fundamentales entre los grupos
establecidos por medio de parentesis cuadrados y los grupos establecidos por paréntesis:

Los caracteres especiales conservan su significado dentro de los paréntesis.
Los grupos establecidos con paréntesis establecen una "etiqueta" o "punto de referencia" para el motor de búsqueda que puede ser utilizada
posteriormente como se denota más adelante.
Utilizados en conjunto con la barra "|" permite hacer búsquedas opcionales. Por ejemplo la expresión regular "al (este|oeste|norte|sur) de" permite
buscar textos que den indicaciones por medio de puntos cardinales, mientras que la expresión regular "este|oeste|norte|sur" encontraría "este" en
la palabra "esteban", no pudiendo cumplir con este propósito.
Utilizado en conjunto con otros caracteres especiales que se detallan posteriormente, ofrece funcionalidad adicional.

El signo de pregunta "?"

El signo de pregunta tiene varias funciones dentro del lenguaje de las expresiones regulares. La primera de ellas es especificar que una parte de la
búsqueda es opcional. Por ejemplo, la expresión regular "ob?scuridad" permite encontrar tanto "oscuridad" como "obscuridad". En conjunto con los
parentesis redondos permite especificar que un conjunto mayor de caracteres es opcional; por ejemplo "Nov(\.|iembre|ember)?" permite encontrar tanto
"Nov" como "Nov.", "Noviembre" y "November". Como se mencionó anteriormente los paréntesis nos permiten establecer un "punto de referencia"
para el motor de búsqueda, sin embargo, algunas veces, no se desea utilizarlos con este propósito, como en el ejemplo anterior
"Nov(\.|iembre|ember)?". En este caso el establecimiento de este punto de referencia (que se detalla más adelante) representa una inversión inútil de
recursos por parte del motor de búsqueda. Para evitar se puede utilizar el signo de pregunta de la siguiente forma: "Nov(?:\.|iembre|ember)?". Aunque
el resultado obtenido será el mismo, el motor de búsqueda no realizará una inversión inútil de recursos en este grupo, sino que lo ignorará. Cuando no
sea necesario reutilizar el grupo, es aconsejable utilizar este formato. De forma similar, es posible utilizar el signo de pregunta con otro significado:
Los paréntesis definen grupos "anónimos", sin embargo el signo de pregunta en conjunto con los paréntesis triangulares "<>" permite "nombrar" estos
grupos de la siguiente forma: "^(?<Día>\d\d)/(?<Mes>\d\d)/(?<Año>\d\d\d\d)$"; Con lo cual se le especifica al motor de búsqueda que los primeros
dos dígitos encontrados llevarán la etiqueta "Día", los segundos la etiqueta "Mes" y los últimos cuatro dígitos llevarán la etiqueta "Año".

Nota: A pesar de la complejidad y flexibilidad dada por los caracteres especiales estudiados hasta ahora, en su mayoría nos permiten encontrar
solamente un caractér a la vez, o un grupo de caracteres a la vez. Los metacaracteres enumerados en adelante permiten establecer repeticiones.

Las llaves "{}"

Comúnmente las llaves son caracteres literales cuando se utilizan por separado en una expresión regular. Para que adquieran su función de
metacaracteres es necesario que encierren uno o varios números separados por coma y que estén colocados a la derecha de otra expresión regular de la
siguiente forma: "\d{2}" Esta expresión le dice al motor de búsqueda que encuentre dos dígitos contiguos. Utilizando esta fórmula podríamos convertir
el ejemplo "^\d\d/\d\d/\d\d\d\d$" que servía para validar un formato de fecha en "^\d{2}/\d{2}/\d{4}$" para una mayor claridad en la lectura de la
expresión.

Nota: Aunque esta forma de encontrar elementos repetidos es muy útil, algunas veces no se conoce con claridad cuantas veces se repite lo que se busca
o su grado de repetición es variable. En estos casos los siguientes metacaracteres son útiles.

El asterisco "*"

El asterisco sirve para encontrar algo que se encuentra repetido 0 o más veces. Por ejemplo, utilizando la expresión "[a-zA-Z]\d*" será posible
encontrar tanto "H" como "H1", "H01", "H100" y "H1000", es decir, una letra seguida de un número indefinido de dígitos. Es necesario tener cuidado
con el comportamiento del asterisco, ya que este por defecto trata de encontrar la mayor cantidad posible de caracteres que correspondan con el patrón
que se busca. De esta forma si se utiliza "\(.*\)" para encontrar cualquier cadena que se encuentre entre paréntesis y se lo aplica sobre el texto "Ver
(Fig. 1) y (Fig. 2)" se esperaría que el motor de búsqueda encuentre los textos "(Fig. 1)" y "(Fig. 2)", sin embargo, debido a esta característica, en su
lugar encontrará el texto "(Fig. 1) y (Fig. 2)". Esto sucede porque el asterisco le dice al motor de búsqueda que llene todos los espacios posibles entre
dos paréntesis. Para obtener el resultado deseado se debe utilizar el asterisco en conjunto con el signo de pregunta de la siguiente forma: "\(.*?\)" Esto
es equivalente a decirle al motor de búsqueda que "Encuentre un paréntesis de apertura y luego encuentre cualquier carácter repetido hasta que
encuentre un paréntesis de cierre".

El signo de suma "+"

Se utiliza para encontrar una cadena que se encuentre repetida 1 o más veces. A diferencia del asterisco, la expresión "[a-zA-Z]\d+" encontrará "H1"
pero no encontrará "H". También es posible utilizar este metacaracter en conjunto con el signo de pregunta para limitar hasta donde se efectúa la
repetición.

Grupos anónimos

Los grupos anónimos se establecen cada vez que se encierra una expresión regular en paréntesis, por lo que la expresión "<([a-zA-Z]\w*?)>" define un
grupo anónimo que tendrá como resultado que el motor de búsqueda almacenará una referencia al texto que corresponda a la expresión encerrada entre
los paréntesis.

La forma más inmediata de utilizar los grupos que se definen es dentro de la misma expresión regular, lo cual se realiza utilizando la barra inversa "\"
seguida del número del grupo al que se desea hacer referencia de la siguiente forma: "<([a-zA-Z]\w*?)>.*?</\1>" Esta expresión regular encontrará
tanto la cadena "Esta" como la cadena "prueba" en el texto "Esta es una prueba" a pesar de que la expresión no contiene los literales "font" y "B".

Otra forma de utilizar los grupos es en el lenguaje de programación que se esté utilizando. Cada lenguaje tiene una forma distinta de acceder a los
grupos. Los ejemplos enumerados a continuación utilizan las clases del .Net Framework, usando la sintáxis de C# (la cual puede fácilmente adaptarse a
VB .Net o cualquier otro lenguaje del Framework o incluso Java o JavaScript).

Para utilizar el motor de búsqueda del .Net Framework es necesario en primer lugar hacer referencia al espacio de nombres
System.Text.RegularExpressions. Luego es necesario declarar una instancia de la clase Regex de la siguiente forma:

Luego asumiendo que el texto que se desea examinar con la expresión regular se encuentra en la variable "sText" podemos recorrer todas las instancias
encontradas de la siguiente forma:

Luego se puede utilizar la propiedad Groups de la clase Match para traer el resultado de la búsqueda:

Grupos nominales

Los grupos nominales son aquellos a los que se les asigna un nombre, dentro de la expresión regular para poder utilizarlos posteriormente. Esto se hace
de forma diferente en los distintos motores de búsqueda, a continuación se explica como hacerlo en el motor del .Net Framework.

Utilizando el ejemplo anterior es posible convertir "<([a-zA-Z]\w*?)>" en "<(?<TagName>[a-zA-Z]\w*?)>" Para encontrar etiquetas HTML. Nótese
el signo de pregunta y el texto "TagName" encerrado entre parentesis triangulares, seguido de este. Para utilizar este ejemplo en el .Net Framework es
posible utilizar el siguiente código:

Es posible definir tantos grupos como sea necesario, de esta forma se puede definir algo como: "<(?<TagName>[a-zA-Z]\w*?) ?(?<Attributes>.*?)>"
para encontrar no solo el nombre del tag HTML sino también sus atributos de la siguiente forma:

 Regex _TagParser = new Regex("<([a-zA-Z]\w*?)>");

 foreach(Match CurrentMatch in _TagParser.Matches(sText)){
 // ----- Código extra aquí -----
 }

 foreach(Match CurrentMatch in _TagParser.Matches(sText)){
 String sTagName = CurrentMatch. Groups[1].Value;
 }

 Regex _TagParser = new Regex("<(?<TagName>[a-zA-Z]\w*?)>");
 foreach(Match CurrentMatch in _TagParser.Matches(sText)){
 String sTagName = CurrentMatch. Groups["TagName"]. Value;
 }

Pero es posible ir mucho más allá de la siguiente forma:

Esta expresión permite encontrar el nombre de la etiqueta, el nombre del atributo y su valor.

Sin embargo, una etiqueta HTML puede tener más de un atributo. Este puede resolverse utilizando repeticiones de la siguiente forma:

Y en el código puede utilizarse de la siguiente forma:

Es posible profundizar utilizando una expresión regular como esta:

La cual permitiría encontrar el nombre de la etiqueta, sus atributos, valores y el contenido de esta, todo con una sola expresión regular.

Véase también

Wikipedia:Bot/Ortografía

Enlaces externos

Expresiones Regulares en Perl (http://perlenespanol.baboonsoftware.com/archives-tut/cat_expresiones_regulares.html)
Portal de Información Expresiones Regulares en General (http://www.regular-expressions.info/)
Tutorial de expresiones regulares (http://www.zvon.org/other/PerlTutorial/Output_spa/contents.html)
Artículo de BULMA sobre expresiones regulares (http://bulma.net/body.phtml?nIdNoticia=736) .
Software visual gratuito para trabajar con expresiones regulares (http://www.ucse.edu.ar/fma/sepa/chalchalero.htm)
Repositorio de Expresiones Regulares (http://www.mis-algoritmos.com/regex.php)
Usar expresiones regulares para evaluar códigos colores (http://www1027.blogspot.com/2007/01/validar-un-color-rgb-con-expresiones.html)

Texto en negrita

Obtenido de "http://es.wikipedia.org/wiki/Expresi%C3%B3n_regular"

Categorías: Programación | Lenguajes formales

Esta página fue modificada por última vez el 18:12, 30 abr 2007.
Contenido disponible bajo los términos de la Licencia de documentación libre de GNU (véase Derechos de autor).
Wikipedia® es una marca registrada de la organización sin ánimo de lucro Wikimedia Foundation, Inc.

 Regex _TagParser = new Regex("<(?<TagName>[a-zA-Z]\w*?) ?(?<Attributes>.*?)>");
 foreach(Match CurrentMatch in _TagParser.Matches(sText)){
 String sTagName = CurrentMatch. Groups["TagName"]. Value;
 String sAttributes = CurrentMatch. Groups["Attributes"]. Value;
 }

 "<?(?<TagName>[a-zA-Z][\w\r\n]*?) ?(?:(?<Attribute>[\w-\r\n]*?)='?"?(?<Value>[\w-:;,\./= \r\n]*?)'?"? ?)>"

 "<?(?<TagName>[a-zA-Z][\w\r\n]*?) ?(?:(?<Attribute>[\w-\r\n]*?)='?"?(?<Value>[\w-:;,\./= \r\n]*?)'?"? ?)*?>"

 Regex _TagParser =
 new Regex("<?(?<TagName>[a-zA-Z][\w\r\n]*?)?
 (?:(?<Attribute>[\w-\r\n]*?)='?"?
 (?<Value>[\w-:;,\./= \r\n]*?)'?"? ?)*?>");
 foreach(Match CurrentMatch in _TagParser.Matches(sText)){
 String sTagName = CurrentMatch. Groups["TagName"]. Value;
 foreach(Capture CurrentCapture in CurrentMatch. Groups["Attribute"]. Captures){
 AttributesCollection. Add(CurrentCapture. Value)
 }
 foreach(Capture CurrentCapture in CurrentMatch. Groups["value"]. Captures){
 ValuesCollection. Add(CurrentCapture. Value)
 }
 }

 "<?(?<TagName>[a-zA-Z][\w\r\n]*?) ?(?:(?<Attribute>[\w-\r\n]*?)='?"?(?<Value>[\w-:;,\./= \r\n]*?)'?"? ?)*?>(?<Content>.*?)</\1>"

http://perlenespanol.baboonsoftware.com/archives-tut/cat_expresiones_regulares.html
http://www.regular-expressions.info/
http://www.zvon.org/other/PerlTutorial/Output_spa/contents.html
http://bulma.net/body.phtml?nIdNoticia=736
http://www.ucse.edu.ar/fma/sepa/chalchalero.htm
http://www.mis-algoritmos.com/regex.php
http://www1027.blogspot.com/2007/01/validar-un-color-rgb-con-expresiones.html
http://es.wikipedia.org/wiki/Expresi

