Expresion regular

De Wikipedia, la enciclopedia libre

Su utilidad més obvia es la de describir un conjunto de cadenas, lo que resulta de utilidad en editores de texto y aplicaciones para buscar y manipular
textos. Muchos lenguajes de programacion admiten el uso de expresiones regulares con este fin. Por ejemplo, Perl tiene un potente motor de
expresiones regulares directamente incluido en su sintaxis. Las herramientas proporcionadas por las distribuciones de Unix (incluyendo el editor sed y
el filtro grep) fueron las primeras en popularizar el concepto de expresion regular.

Tabla de contenidos

= 1 Conceptos basicos
m 2 Expresiones regulares en teoria de lenguajes formales
= 3 Aplicaciones

m 4 Las expresiones regulares en programacion

= 5 Descripcion de la expresiones regulares

5.1 El Punto "."

= 5.2 La barra inversa o contrabarra”\"
= 5.3 Los corchetes "[]"

= 5.4 Labarra"|"

= 5.5 El signo de dolar "$"

= 5.6 El acento circunflejo "~

m 5.7 Los paréntesis"()"
n
n
n
n

5.8 El signo de pregunta "?"
5.9 Las llaves "{}"

5.10 El asterisco "*"

5.11 El signo de suma "+"
5.12 Grupos anénimos

= 6 Véase también

= 7 Enlaces externos

Conceptos basicos

Una expresion regular, a menudo llamada también patroén, es una expresion que describe un conjunto de cadenas sin enumerar sus elementos. Por
ejemplo, el grupo formado por las cadenas Handel, Hiindel y Haendel se describe mediante el patron "H(ajdjae)ndel”. La mayoria de las
formalizaciones proporcionan los siguientes constructores:Una expresion regular es una forma de representar a los lenguajes regulares (finitos o
infinitos) y se construye utilizando caracteres del alfabeto sobre el cual se define el lenguaje. Especificamente, las expresiones regulares se construyen
utilizando los operadores [[unién concatenacién y clausura de Kleene.

alternacion
Una barra vertical separa las alternativas. Por ejemplo, "marrén|castafio” casa con marrén 0 castaiio.
cuantificacion
Un cuantificador tras un caracter especifica la frecuencia con la que éste puede ocurrir. Los cuantificadores mas comunes son +, ? y *:

+
El signo mas indica que el caracter al que sigue debe aparecer al menos una vez. Por ejemplo, "ho+la" describe el conjunto infinito Aola,
hoola, hooola, hoooola, etcétera.

"
El signo de interrogacion indica que el caracter al que sigue puede aparecer como mucho una vez. Por ejemplo, "ob?scuro” casa con
oscuro 'y obscuro.

*
El asterisco indica que el caracter al que sigue puede aparecer cero, una, 0 mas veces. Por ejemplo, "0*42" casa con 42, 042, 0042, 00042,
etcétera.

agrupacion

Los paréntesis pueden usarse para definir el ambito y precedencia de los deméas operadores. Por ejemplo, "(p|m)adre" es lo mismo que
"padre|madre”, y "(des)?amor" casa con amor y con desamor.

Los constructores pueden combinarse libremente dentro de la misma expresion, por lo que "H(ae?|d)ndel" equivale a "H(alae|a)ndel".

La sintaxis precisa de las expresiones regulares cambia segun las herramientas y aplicaciones consideradas, y se describe con mas detalle a
continuacion.

Expresiones regulares en teoria de lenguajes formales

Las expresiones regulares estan formadas por constantes y operadores y denotan conjuntos de palabras llamados conjuntos regulares. Dado un alfabeto
finito S, se definen las siguientes constantes:

1. (conjunto vacio) @ que denota el conjunto @
2. (palabra vacia) e que denota el conjunto {e}
3. (cardcter del alfabeto) a elemento de S que denota el conjunto {"a"'}

y las siguientes operaciones:

1. (union) r|s que denota la unién de R y S, donde R y S son respectivamente los conjuntos denotados por las expresiones ry s.

2. (concatenacidn) rs que denota el conjunto { all |a en Ry B en S}, donde R y S representan respectivamente los conjuntos denotados por las
expresiones r y s. Por ejemplo, la expresion "(ab|c)(d|ef)" denota el conjunto {"ab", "c"}{"d", "ef"} = {"abd", "abef", "cd", "cef"}.

3. (clausura de Kleene) r* que denota el mas pequefio conjunto que extiende a R, contiene e y esté cerrado por concatenacion de palabras, donde R
es el conjunto denotado por la expresion r. #* es también el conjunto de todas las palabras que pueden construirse por concatenacion de cero o
mas ocurrencias de R. Por ejemplo, "(abjc)*" contiene las palabras e, "ab", "c", "abab", "abc", "cab", "cc", "ababab", etcétera.

Para reducir al minimo el nimero de paréntesis necesarios para escribir una expresion regular, se asume que la clausura de Kleene es el operador de
mayor prioridad, seguido de concatenacidn y luego la unién de conjuntos. Los paréntesis solo se incluyen para eliminar ambigiiedades. Por ejemplo,
"(ab)c" se escribe igualmente como "abc" y "U(b(c*))" puede escribirse "Ubc*".

Aplicaciones

Numerosos editores de texto y otras utilidades (especialmente en el sistema operativo UNIX), como por ejemplo sed y awk, utilizan expresiones
regulares para, por ejemplo, buscar palabras en el texto y reemplazarlas con alguna otra cadena de caracteres.

Las expresiones regulares en programacion

Nota: Para el entendimiento completo de esta seccion es necesario poseer conocimientos generales acerca de lenguajes de programacion o
programacion en general.

En el 4rea de la programacion las expresiones regulares son un método por medio del cual se pueden realizar bisquedas dentro de cadenas de
caracteres. Sin importar si la busqueda requerida es de dos caracteres en una cadena de 10 o si es necesario encontrar todas las apariciones de un patrén
definido de caracteres en un archivo de millones de caracteres, las expresiones regulares proporcionan una solucién para el problema. Adicionalmente,
un uso derivado de la bisqueda de patrones es la validacion de un formato especifico en una cadena de caracteres dada, como por ejemplo fechas o
identificadores.

Para poder utilizar las expresiones regulares al programar es necesario tener acceso a un motor de blsqueda con la capacidad de utilizarlas. Es posible
clasificar los motores disponibles en dos tipos: Motores para el programador y Motores para el usuario final.

Motores para el usuario final: Son programas que permiten realizar bisquedas sobre el contenido de un archivo o sobre un texto extraido y colocado
en el programa. Estan disefiados para permitir al usuario realizar bisquedas avanzadas usando este mecanismo, sin embargo es necesario aprender a
redactar expresiones regulares adecuadas para poder utilizarlos eficientemente. Estos son algunos de los programas disponibles:

grep: Programa de los sistemas operativos Unix/Linux

PowerGrep: version de grep para los sistemas operativos Windows

RegexBuddy: Ayuda a crear las expresiones regulares en forma interactiva y luego le permite al usuario usarlas y guardarlas.

EditPad Pro: Permite realizar bisquedas con expresiones regulares sobre archivos y las muestra por medio de cddigo de colores para facilitar su
lectura y comprension.

Motores para el programador: Permiten automatizar el proceso de bisqueda de modo que sea posible utilizarlo muchas veces para un propdsito
especifico. Estas son algunas de las herramientas de programacion disponibles que ofrecen motores de blsqueda con soporte a expresiones regulares:

» Java: Existen varias librerias hechas para java que permiten el uso de RegEXx, y Sun planea dar soporte a estas desde el SDK

» JavaScript: A partir de la version 1.2 (ied+, ns4+) JavaScript tiene soporte integrado para expresiones regulares, lo que significa que las
validaciones que se realizan normalmente en una pagina web podrian simplificarse grandemente si el programador supiera utilizar esta
herramienta.

Perl: Es el lenguaje que hizo crecer a las expresiones regulares en el &mbito de la programacién hasta llegar a lo que son hoy en dia.

PCRE: Libreria de ExReg para C, C++ y otros lenguajes que puedan utilizar librerias dll (Visual Basic 6 por ejemplo).

PHP: Tiene dos tipos diferentes de expresiones regulares disponibles para el programador.

Python: Lenguaje de "scripting” popular con soporte a Expresiones Regulares.

.Net Framework: Provee un conjunto de clases mediante las cuales es posible utilizar expresiones regulares para hacer blsquedas, reemplazar
cadenas y validar patrones.

Nota: De las herramientas mencionadas con anterioridad se utilizan el EditPad Pro y el .Net Framework para dar ejemplos, aunque es posible utilizar
las expresiones regulares con cualquier combinacion de las herramientas mencionadas. Aunque en general las Expresiones Regulares utilizan un
lenguaje comun en todas las herramientas, las explicaciones practicas acerca de la utilizacion de las herramientas y los ejemplos de cddigo deben ser
interpretados de forma diferente. También es necesario hacer notar que existen algunos detalles de sintaxis de las expresiones regulares que son
propietarios del .Net Framework que se utilizan en forma diferente en las demas herramientas de programacién. Cuando estos casos se den se hara
notar en forma explicita para que el lector pueda buscar informacion respecto a estos detalles en fuentes adicionales. En el futuro se incluiran
adicionalmente ejemplos de otras herramientas y lenguajes de programacion.

Expresiones Regulares como motor de busqueda

Las expresiones regulares permiten encontrar porciones especificas de texto dentro de una cadena mas grande de caracteres. Asi, si es necesario
encontrar el texto "lote" en la expresion "el ocelote salto al lote contiguo™ cualquier motor de bisqueda seria capaz de efectuar esta labor. Sin embargo,
la mayoria de los motores de busqueda encontrarian también el fragmento "lote" de la palabra "ocelote", lo cual podria no ser el resultado esperado.
Algunos motores de bisqueda permiten adicionalmente especificar que se desea encontrar solamente palabras completas, solucionando este problema.
Las expresiones regulares permiten especificar todas estas opciones adicionales y muchas otras sin necesidad de configurar opciones adicionales, sino

utilizando el mismo texto de busqueda como un lenguaje que permite enviarle al motor de bisqueda exactamente lo que deseamos encontrar en todos
los casos, sin necesidad de activar opciones adicionales al realizar la bisqueda.

Expresiones Regulares como lenguaje

Para especificar opciones dentro del texto a buscar se utiliza un lenguaje o convencién mediante el cual se le transmite al motor de blsqueda el
resultado que se desea obtener. Este lenguaje le da un significado especial a una serie de caracteres. Por lo tanto cuando el motor de busqueda de
Expresiones Regulares encuentre estos caracteres no los buscara en el texto en forma literal, sino que buscara lo que los caracteres significan. A estos
caracteres se les Ilama algunas veces "meta-caracteres”. A continuacion se listan los principales meta-caracteres y su funcién y como los interpreta el
motor de Expresiones Regulares.

Descripcion de la expresiones regulares

El Punto "."

El punto es interpretado por el motor de bisqueda como cualquier otro caracter excepto los caracteres que representan un salto de linea, a menos que se
le especifique esto al motor de Expresiones Regulares. Por lo tanto si esta opcién se deshabilita en el motor de bisqueda que se utilice, el punto le dird
al motor que encuentre cualquier caracter incluyendo los saltos de linea. En la herramienta EditPad Pro esto se hace por medio de la opcion "punto
corresponde a nueva linea" en las opciones de busqueda. En .Net Framework se utiliza la opcién RegexOptions. Singleline al efectuar la busqueda o
crear la expresion regular.

El punto se utiliza de la siguiente forma: Si se le dice al motor de RegEx que busque "g.t" en la cadena "el gato de piedra en la gética puerta de
getishoro goot" el motor de bisqueda encontrara "gat", "gét" y por ultimo "get". Nétese que el motor de bisqueda no encuentra "goot"; esto es porque
el punto representa un solo carécter y inicamente uno. Si es necesario que el motor encuentra también la expresion "goot", sera necesario utilizar
repeticiones, las cuales se explican mas adelante.

Aunque el punto es muy Util para encontrar caracteres que no conocemos, es necesario recordar que corresponde a cualquier caracter y que muchas
veces esto no es lo que se requiere. Es muy diferente buscar cualquier caracter que buscar cualquier caracter alfanumérico o cualquier digito o
cualquier no-digito o cualquier no-alfanumérico. Se debe tomar esto en cuenta antes de utilizar el punto y obtener resultados no deseados.

La barra inversa o contrabarra'\"

Se utiliza para "marcar" el siguiente caracter de la expresion de busqueda de forma que este adquiera un significado especial o deje de tenerlo. O sea, la
barra inversa no se utiliza nunca por si sola, sino en combinacion con otros caracteres. Al utilizarlo por ejemplo en combinacién con el punto "\." este
deja de tener su significado normal y se comporta como un caracter literal.

De la misma forma, cuando se coloca la barra inversa seguida de cualquiera de los caracteres especiales que discutiremos a continuacion, estos dejan
de tener su significado especial y se convierten en caracteres de busqueda literal.

Como ya se menciono con anterioridad, la barra inversa también puede darle significado especial a caracteres que no lo tienen. A continuacion hay una
lista de algunas de estas combinaciones:

= \t - Representa un tabulador.

= \r - Representa el "regreso al inicio” o sea el lugar en que la linea vuelve a iniciar.

= \n - Representa la "nueva linea" el caracter por medio del cual una linea da inicio. Es necesario recordar que en Windows es necesaria una
combinacién de \r\n para comenzar una nueva linea, mientras que en Unix solamente se usa \n.

= \a - Representa una "campana” o "beep" que se produce al imprimir este caracter.

= \e - Representa la tecla "Esc" o "Escape”

= \f - Representa un salto de pagina

= \v - Representa un tabulador vertical

= \x - Se utiliza para representar caracteres ASCIl o ANSI se conoce su codigo. De esta forma, si se busca el simbolo de derechos de autor y la
fuente en la que se busca utiliza el conjunto de caracteres Latin-1 es posible encontrarlo utilizando "\xA9".

= \u - Se utiliza para representar caracteres Unicode si se conoce su codigo. "\u0O0OA2" representa el simbolo de centavos. No todos los motores de
Expresiones Regulares soportan Unicode. El .Net Framework lo hace, pero el EditPad Pro no, por ejemplo.

= \d - Representa un digito del 0 al 9.

= \w - Representa cualquier carécter alfanumérico.

= \s - Representa un espacio en blanco.

= \D - Representa cualquier caracter que no sea un digito del 0 al 9.

= \W - Representa cualquier caracter no alfanumérico.

= \S - Representa cualquier caracter que no sea un espacio en blanco.

= \A - Representa el inicio de la cadena. No un caracter sino una posicion.

= \Z - Representa el final de la cadena. No un carécter sino una posicion.

= \b - Marca el inicio y el final de una palabra.

= \B - Marca la posicién entre dos caracteres alfanuméricos o dos no-alfanuméricos.

Nota: La utilidad Charmap.exe de Windows permite encontrar los codigos ASCII/ANSI/UNICODE para utilizarlos en Expresiones Regulares.

Los corchetes "[]"

La funcion de los corchetes en el lenguaje de las expresiones regulares es representar "clases de caracteres", o sea, agrupar caracteres en grupos o
clases. Son Utiles cuando es necesario buscar uno de un grupo de caracteres. Dentro de los corchetes es posible utilizar el guién "-" para especificar
rangos de caracteres. Adicionalmente, los metacaracteres pierden su significado y se convierten en literales cuando se encuentran dentro de los
parentesis cuadrados. Por ejemplo, como vimos en la entrega anterior "\d" nos es Util para buscar cualquier caréacter que represente un digito. Sin
embargo esta denominacion no incluye el punto "." que divide la parte decimal de un nimero. Para buscar cualquier caracter que representa un digito o

un punto podemos utilizar la expresion regular "[\d.]". Como se hizo notar anteriormente, dentro de los corchetes, el punto representa un caracter literal
y no un metacaracter, por lo que no es necesario antecederlo con la barra inversa. El Gnico caracter que es necesario anteceder con la barra inversa
dentro de los parentesis cuadrados es la propia barra inversa. La expresion regular "[\dA-Fa-f]" nos permite encontrar digitos hexadecimales. Los
corchetes nos permiten también encontrar palabras adn si estan escritas de forma errénea, por ejemplo, la expresion regular “expresi[o6]n" nos permite
encontrar en un texto al palabra "expresion” aunque se haya escrito con o sin acento. Es necesario aclarar que sin importar cuantos caracteres se
introduzcan dentro del grupo por medio de los corchetes, el grupo solo le dice al motor de blsqueda que encuentre un solo caracter a la vez, es decir,
que "expresi[06]n" no encontrara "expresioon™ o “expresiodn".

La barra "|"

Nos sirve para indicar una de varias opciones. Por ejemplo, la expresion regular "aje" encontrara cualquier "a" o "e" dentro del texto. La expresion
regular "este|oeste|norte|sur" permitira encontrar cualquiera de los nombres de los puntos cardinales. La barra se utiliza cominmente en conjunto con
otros caracteres especiales.

El signo de dolar "$"

Representa el final de la cadena de caracteres o el final de la linea, si se utiliza el modo multi-linea. No representa un caractér en especial sino una
posicion. Si se utiliza la expresion regular "\.$" el motor encontrara todos los lugares donde un punto finalice la linea, lo que es til para avanzar entre
parrafos.

El acento circunflejo """

Este caractér tiene una doble funcionalidad, que difiere cuando se utiliza individualmente y cuando se utiliza en conjunto con otros caracteres
especiales. En primer lugar su funcionalidad como caracter individual; de manera similar que el signo de délar "$" representa el inicio de la cadena, de
forma que si se utiliza la expresion regular "~[a-z]" el motor encontrara todos los parrafos que den inicio sin utilizar la letra mayudscula. Cuando se
utiliza en conjunto con los corchetes de la siguiente forma "[\w]" permite encontrar cualquier caracter que NO se encuentre dentro del grupo
indicado. La expresion indicada permite encontrar, por ejemplo, cualquier caracter que no sea alfanumérico o un espacio, o sea, busca todos los
simbolos de puntuacion y demas caracteres especiales. La utilizacién en conjunto de los caracteres especiales """ y "$" permite realizar validaciones en
forma sencilla. Por ejemplo "Md$" permite asegurar que la cadena a verificar representa un nico digito, "\d\d/\d\d/\d\d\d\d$" permite validar una
fecha en formato corto, aunque no permite verificar si es una fecha vélida, ya que 99/99/9999 también seria valido en este formato; la validacién
completa de una fecha también es posible mediente expresiones regulares, como se ejemplifica mas adelante..

Los paréntesis" ()"

De forma similar que los corchetes, los paréntesis sirven para agrupar caracteres, sin embargo existen varias diferencias fundamentales entre los grupos
establecidos por medio de parentesis cuadrados y los grupos establecidos por paréntesis:

= Los caracteres especiales conservan su significado dentro de los paréntesis.

= Los grupos establecidos con paréntesis establecen una "etiqueta” o "punto de referencia” para el motor de busqueda que puede ser utilizada
posteriormente como se denota més adelante.

= Utilizados en conjunto con la barra "|" permite hacer busquedas opcionales. Por ejemplo la expresion regular "al (este|oeste|norte|sur) de™ permite
buscar textos que den indicaciones por medio de puntos cardinales, mientras que la expresion regular "este|oeste|norte|sur" encontraria "este" en
la palabra "esteban", no pudiendo cumplir con este propdsito.

= Utilizado en conjunto con otros caracteres especiales que se detallan posteriormente, ofrece funcionalidad adicional.

El signo de pregunta "?"

El signo de pregunta tiene varias funciones dentro del lenguaje de las expresiones regulares. La primera de ellas es especificar que una parte de la
blsqueda es opcional. Por ejemplo, la expresion regular "ob?scuridad” permite encontrar tanto "oscuridad™ como "obscuridad". En conjunto con los
parentesis redondos permite especificar que un conjunto mayor de caracteres es opcional; por ejemplo "Nov(\.Jiembrelember)?" permite encontrar tanto
"Nov" como "Nov.", "Noviembre" y "November". Como se menciond anteriormente los paréntesis nos permiten establecer un "punto de referencia”
para el motor de bisqueda, sin embargo, algunas veces, no se desea utilizarlos con este prop6sito, como en el ejemplo anterior
"Nov(\.iembrejember)?". En este caso el establecimiento de este punto de referencia (que se detalla mas adelante) representa una inversion indtil de
recursos por parte del motor de blsqueda. Para evitar se puede utilizar el signo de pregunta de la siguiente forma: "Nov(?:\.Jiembrelember)?". Aunque
el resultado obtenido sera el mismo, el motor de blsqueda no realizara una inversién in(til de recursos en este grupo, sino que lo ignorara. Cuando no
sea necesario reutilizar el grupo, es aconsejable utilizar este formato. De forma similar, es posible utilizar el signo de pregunta con otro significado:
Los paréntesis definen grupos "anénimos", sin embargo el signo de pregunta en conjunto con los paréntesis triangulares "<>" permite "nombrar" estos
grupos de la siguiente forma: "~(?<Dia>\d\d)/(?<Mes>\d\d)/(?<Afio>\d\d\d\d)$"; Con lo cual se le especifica al motor de busqueda que los primeros
dos digitos encontrados llevaran la etiqueta "Dia", los segundos la etiqueta "Mes" y los Gltimos cuatro digitos llevaran la etiqueta "Afio".

Nota: A pesar de la complejidad y flexibilidad dada por los caracteres especiales estudiados hasta ahora, en su mayoria nos permiten encontrar
solamente un caractér a la vez, o un grupo de caracteres a la vez. Los metacaracteres enumerados en adelante permiten establecer repeticiones.

Las llaves "{}"

Comunmente las Ilaves son caracteres literales cuando se utilizan por separado en una expresion regular. Para que adquieran su funcion de
metacaracteres es necesario que encierren uno o varios nimeros separados por coma y que estén colocados a la derecha de otra expresion regular de la
siguiente forma: "\d{2}" Esta expresion le dice al motor de busqueda que encuentre dos digitos contiguos. Utilizando esta formula podriamos convertir
el ejemplo "Md\d/\d\dA\d\d\d\d$" que servia para validar un formato de fecha en "M\d{2}N\d{2}/\d{4}$" para una mayor claridad en la lectura de la
expresion.

Nota: Aunque esta forma de encontrar elementos repetidos es muy Util, algunas veces no se conoce con claridad cuantas veces se repite lo que se busca
0 su grado de repeticion es variable. En estos casos los siguientes metacaracteres son Utiles.

El asterisco "*"

El asterisco sirve para encontrar algo que se encuentra repetido 0 0 méas veces. Por ejemplo, utilizando la expresion "[a-zA-Z]\d*" sera posible
encontrar tanto "H" como "H1", "HO1", "H100" y "H1000", es decir, una letra seguida de un nimero indefinido de digitos. Es necesario tener cuidado
con el comportamiento del asterisco, ya que este por defecto trata de encontrar la mayor cantidad posible de caracteres que correspondan con el patrén
que se busca. De esta forma si se utiliza "\(.*\)" para encontrar cualquier cadena que se encuentre entre paréntesis y se lo aplica sobre el texto "Ver
(Fig. 1) y (Fig. 2)" se esperaria que el motor de bisqueda encuentre los textos "(Fig. 1)" y "(Fig. 2)", sin embargo, debido a esta caracteristica, en su
lugar encontrara el texto "(Fig. 1) y (Fig. 2)". Esto sucede porque el asterisco le dice al motor de busqueda que llene todos los espacios posibles entre
dos paréntesis. Para obtener el resultado deseado se debe utilizar el asterisco en conjunto con el signo de pregunta de la siguiente forma: "\(.*?\)" Esto
es equivalente a decirle al motor de bisqueda que "Encuentre un paréntesis de apertura y luego encuentre cualquier caracter repetido hasta que
encuentre un paréntesis de cierre".

El signo de suma "+"

Se utiliza para encontrar una cadena que se encuentre repetida 1 0 mas veces. A diferencia del asterisco, la expresion "[a-zA-Z]\d+" encontrara "H1"
pero no encontrard "H". También es posible utilizar este metacaracter en conjunto con el signo de pregunta para limitar hasta donde se efectua la
repeticion.

Grupos anénimos

Los grupos andnimos se establecen cada vez que se encierra una expresion regular en paréntesis, por lo que la expresion "<([a-zA-Z]\w*?)>" define un
grupo anénimo que tendra como resultado que el motor de bisqueda almacenara una referencia al texto que corresponda a la expresion encerrada entre
los paréntesis.

La forma mas inmediata de utilizar los grupos que se definen es dentro de la misma expresion regular, lo cual se realiza utilizando la barra inversa "\"
seguida del nimero del grupo al que se desea hacer referencia de la siguiente forma: "<([a-zA-Z]\Ww*?)>.*?</\1>" Esta expresion regular encontrara
tanto la cadena "Esta" como la cadena "prueba” en el texto "Esta es una prueba” a pesar de que la expresion no contiene los literales "font" y "B".

Otra forma de utilizar los grupos es en el lenguaje de programacion que se esté utilizando. Cada lenguaje tiene una forma distinta de acceder a los
grupos. Los ejemplos enumerados a continuacion utilizan las clases del .Net Framework, usando la sintaxis de C# (la cual puede facilmente adaptarse a
VB .Net o cualquier otro lenguaje del Framework o incluso Java o JavaScript).

Para utilizar el motor de busqueda del .Net Framework es necesario en primer lugar hacer referencia al espacio de nombres
System.Text.RegularExpressions. Luego es necesario declarar una instancia de la clase Regex de la siguiente forma:

Regex _TagParser = new Regex("<([a-zA-Z]\w*?)>");

Luego asumiendo que el texto que se desea examinar con la expresion regular se encuentra en la variable "sText" podemos recorrer todas las instancias
encontradas de la siguiente forma:

foreach(Match CurrentMatch in _TagParser._Matches(sText)){
// ————- Cédigo extra aqui -----

foreach(Match CurrentMatch in _TagParser.Matches(sText)){
String sTagName = CurrentMatch. Groups[1].Value;

Grupos nominales

Los grupos nominales son aquellos a los que se les asigna un nombre, dentro de la expresion regular para poder utilizarlos posteriormente. Esto se hace
de forma diferente en los distintos motores de bisqueda, a continuacion se explica como hacerlo en el motor del .Net Framework.

Utilizando el ejemplo anterior es posible convertir "<([a-zA-Z]\Ww*?)>" en "<(?<TagName>[a-zA-Z]\w*?)>" Para encontrar etiquetas HTML. Notese
el signo de pregunta y el texto "TagName" encerrado entre parentesis triangulares, seguido de este. Para utilizar este ejemplo en el .Net Framework es
posible utilizar el siguiente codigo:

1

1 Regex _TagParser = new Regex(''<(?<TagName>[a-zA-Z]\w*?)>");
i foreach(Match CurrentMatch in _TagParser.Matches(sText)){

1 String sTagName = CurrentMatch. Groups[''TagName']. Value;
:

1

1

Es posible definir tantos grupos como sea necesario, de esta forma se puede definir algo como: "<(?<TagName>[a-zA-Z]\w*?) ?(?<Attributes>.*?)>"
para encontrar no solo el nombre del tag HTML sino también sus atributos de la siguiente forma:

Regex _TagParser = new Regex(‘'<(?<TagName>[a-zA-Z]\w*?) ?(?<Attributes>_*?)>");
foreach(Match CurrentMatch in _TagParser.Matches(sText)){

String sTagName = CurrentMatch. Groups['TagName']. Value;

String sAttributes = CurrentMatch. Groups["Attributes']. Value;

"<?(?<TagName>[a-zA-Z][\w\r\n]*?) ?(?:(?<Attribute>[\w-\r\n]*?)="?"?(?<Value>[\w-:;,\./= \r\n]*?)"?"? ?)>":

Esta expresion permite encontrar el nombre de la etiqueta, el nombre del atributo y su valor.

Sin embargo, una etiqueta HTML puede tener mas de un atributo. Este puede resolverse utilizando repeticiones de la siguiente forma:

"<?(?<TagName>[a-zA-Z][\w\r\n]*?) ?(?:(?<Attribute>[\w-\r\n]*?)="?"?(?<Value>[\w-:;,\./= \r\n]*?)"?"? ?)*?L"
1

Regex _TagParser =
new Regex("'<?(?<TagName>[a-zA-Z][\w\r\n]*?)?
(?: (?<Attribute>[\w-\r\n]*?)="?"?
(?<value>[\w-:;,\./= \r\n]*?)"?"? ?2)*?>");
foreach(Match CurrentMatch in _TagParser.Matches(sText)){
String sTagName = CurrentMatch. Groups[''TagName']. Value;
foreach(Capture CurrentCapture in CurrentMatch. Groups["Attribute']. Captures){
AttributesCollection. Add(CurrentCapture. Value)

foreach(Capture CurrentCapture in CurrentMatch. Groups[''value']. Captures){
ValuesCollection. Add(CurrentCapture. Value)

La cual permitiria encontrar el nombre de la etiqueta, sus atributos, valores y el contenido de esta, todo con una sola expresion regular.

Véase también

= Wikipedia:Bot/Ortografia

Enlaces externos

= Expresiones Regulares en Perl (http://perlenespanol.baboonsoftware.com/archives-tut/cat_expresiones_regulares.html)

Portal de Informacion Expresiones Regulares en General (http://www.regular-expressions.info/)

Tutorial de expresiones regulares (http://www.zvon.org/other/PerlTutorial/Output_spa/contents.html)

Articulo de BULMA sobre expresiones regulares (http://bulma.net/body.phtmI?nldNoticia=736) .

Software visual gratuito para trabajar con expresiones regulares (http://www.ucse.edu.ar/fma/sepa/chalchalero.htm)

Repositorio de Expresiones Regulares (http://www.mis-algoritmos.com/regex.php)

Usar expresiones regulares para evaluar cddigos colores (http://www1027.blogspot.com/2007/01/validar-un-color-rgh-con-expresiones.html)

Texto en negrita
Obtenido de "http://es.wikipedia.org/wiki/Expresi%C3%B3n_regular"
Categorias: Programacion | Lenguajes formales

» Esta pagina fue modificada por Gltima vez el 18:12, 30 abr 2007.

= Contenido disponible bajo los términos de la Licencia de documentacion libre de GNU (véase Derechos de autor).
Wikipedia® es una marca registrada de la organizacion sin animo de lucro Wikimedia Foundation, Inc.

http://perlenespanol.baboonsoftware.com/archives-tut/cat_expresiones_regulares.html
http://www.regular-expressions.info/
http://www.zvon.org/other/PerlTutorial/Output_spa/contents.html
http://bulma.net/body.phtml?nIdNoticia=736
http://www.ucse.edu.ar/fma/sepa/chalchalero.htm
http://www.mis-algoritmos.com/regex.php
http://www1027.blogspot.com/2007/01/validar-un-color-rgb-con-expresiones.html
http://es.wikipedia.org/wiki/Expresi

