Proyecto FKScript

Implementacion mediante ANTLR y C#
de un compilador y una maquina virtual
para un lenguaje de script sencillo

Versiéon 0.1 — 12/03/2008
(Borrador)

© 2008 Salvador Gémez

www.sgoliver.net

Creative Commons (Reconocimiento-NoComercial-Compartirlgual 2.5)

Proyecto FKScript

Salvador Gémez

INDICE DEL DOCUMENTO

1. Introduccién al Proyecto
2. Introduccién ANTLR
3. Proceso General FKScript

4. Andlisis Léxico y Sintactico de FKScript
4.1. Andlisis léxico
4.2. Analisis sintactico
4.3. Recuento y reporte de errores
4.4. Construccion del AST
4.5. Construccion de la tabla de simbolos
4.6. Finalizando el analizador Iéxico-sintactico

5. Andlisis Semantico de FKScript
5.1. Tareas del anélisis seméntico
5.2. Enriqueciendo los nodos del arbol AST
5.3. Implementacion del analizador en ANTLR v3
5.4. Célculo y chequeo de tipos
5.5. Programa principal

6. Generacion de Cdédigo de FKScript
6.1. Maquina virtual FKVM
6.2. Primeros pasos
6.3. Generacioén de cédigo para literales e identificadores
6.4. Generacién de cédigo para expresiones aritméticas
6.5. Generacion de cédigo para expresiones légicas
6.6. Generacion de cédigo para asignaciones
6.7. Generacion de cédigo para instrucciones condicionales y bucles
6.8. Generacion de cédigo para el programa principal FKIL
6.9. Programa principal

7. Ensamblador de cédigo FKIL (FKASM)

7.1. Tareas del ensamblador

7.2. Estructuras de datos

7.3. Inicializacién del ensamblador

7.4. Primera pasada del ensamblador
7.4.1. Procesamiento de directivas
7.4.2. Procesamiento de etiquetas
7.4.3. Procesamiento de instrucciones

7.5. Segunda pasada del ensamblador

8. Maquina Virtual de FKScript (FKVM)

8.1. Estructura de la maquina virtual
8.1.1. Segmento de codigo
8.1.2. Registro contador de programa
8.1.3. Pila
8.1.4. Memoria dinamica
8.1.5. Tabla de funciones API

8.2. Carga de un programa

8.3. Ejecucion de un programa

8.4. Ejecucion de instrucciones
8.4.1. Instrucciones PUSH
8.4.2. Instrucciones LOAD
8.4.3. Instrucciones STORE
8.4.4. Instrucciones aritméticas
8.4.5. Instrucciones de comparacion
8.4.6. Instrucciones de salto condicional
8.4.7. Instrucciones de llamada a funcién externa

Version 0.1 (Borrador)

Proyecto FKScript

Salvador Gémez

8.5. Integracién con otras aplicaciones
8.5.1. Registro de funciones API
8.5.2. Definicién de la API de la aplicacion externa
ANEXO I: Especificacién del lenguaje FKScript

ANEXO II;: Especificacion del lenguaje FKIL

Version 0.1 (Borrador)

Proyecto FKScript Salvador Gomez

Introduccion al proyecto FKScript

En este primer capitulo haremos una breve introduccién al
proyecto FKScript. Comentaremos como surge la idea, los
requisitos que definiremos para el sistema final y las
herramientas con las que contaremos para su desarrollo.

Version 0.1 (Borrador) 4

Proyecto FKScript Salvador Gomez

Mis primeros pasos en el mundo de las herramiedgageneracion de compiladores fueron con
Flex y Bison (versiones GNU deexy Yacq. Estas herramientas, aunque potentes, resultdgan
tediosas de utilizar tanto por sus caracteristind$nsecas como por el codigo generado, en
lenguaje C. A pesar de todo, mis primeros trabams estas herramientas me proporcionaron
enormes conocimientos sobre este bonito campoedalrilio de software, aunque eso si, pasando
por muchas dificultades durante el aprendizajediedila falta de documentacién en espariol sobre
la generacion de procesadores de lenguaje y sabrddrramientas concretas utilizadas en el
proceso.

Mas tarde, mis comienzos con ANTLR (alla por lasuar 2.7) no fueron mejores. Me fascinaba un
artilugio que unificara en una sola herramienta$olds procesos de generacion de un compilador:
el analisis léxico y analisis sintactico mediantéeaatas LL, la generacion y recorrido de arboles
de sintaxis abstracta (AST) para el analisis ses@ny la generacion de codigo tradicional o
mediante plantillast¢mplatey todo con una sintaxis comun y con una integratiéal entre todos
los modulos sin tener que recurrir a herramiengatertteros o desarrolladad hoc Sin embargo,

la curva de aprendizaje para ANTLR resultd mas ymoiada de lo esperado, ya no por la falta de
documentacion técnica de referencia (extensa peliagtés) sino por la falta de documentacion
practica, es decir, documentacion sobre como enfcdesarrollo de un traductor o compilador
con esta nueva herramienta.

Por aquel entonces un comparfiero de promociéon deadmo proyecto fin de carrera un fantastico
estudio de la version 2.7.2 de ANTI(RNTLR v2), abordando el tema desde un punto déavi
completamente practico, es decir, desarrollandaledero un compilador para un lenguaje
relativamente sencillo aunque bastante completie. tEabajo resultd ser un recurso inmejorable de
informacion util sobre ANTLR 2.

Sin embargo, con la llegada de ANTLR v3 todo volziéambiar. La documentacion de la version
anterior habia quedado obsoleta ya que los cangite una versién y otra son notables, la
documentacion publica y gratuita de la versionifkabia por su ausencia (aunque poco a poco se va
incrementando en forma deki, por supuesto en inglés) y el Unico documentaiesirado con
informacion sobre la herramienta era el libidn& Definitive ANTLR Reference: Building Domain-
Specific Languagésdel propio autor de ANTLRTerence ParrY por supuesto que recomiendo
adquirir el libro a todo aquel que esté realmenteresado en conocer a fondo ANTLR, pero no
deja de ser una fuente de informacion que no ésiéance de todos de forma gratuita como cabria
esperar de una herramienta de cédigo libre corddNd4.R (licencia BSD).

Y aqui es precisamente donde pensé que podriaagpoirtgranito de arena a todo este asunto.
Aprovechando un proyecto personal en el que hatala ANTLR v3 para generar el procesador
de un pequefo lenguaje de script decidi escribipaquefio documento sobre el desarrollo de un
compilador para un lenguaje ain mas pequeiio. 4udge sin complicaciones innecesarias, lo mas
basico posible para no perdernos en explicaciobesdocumento para comenzar a conocer
ANTLR 3 y saber como empezar a aplicarlo al deflard® un compilador y una maquina virtual
sencillos utilizando como lenguaje base C#. Enndefa, algo que asiente las bases necesarias
para, a partir de ahi, poder seguir profundizamdel ¢ema todo lo que se desee.

Y asi nace este documento que aun no sé como ilamaual de ANTLR 3, tutorial de ANTLR 3,
guia practica de ANTLR 3... quizad documentaciérciizd de iniciacion a ANTLR v3 con C#.

¢A quiénes esta dirigido este tutorial? Pues encipid a cualquiera que quiera conocer los
entresijos basicos de un sistema como el que genpee construir, y que desee utilizar como

Version 0.1 (Borrador) 5

Proyecto FKScript Salvador Gomez

herramientas de apoyo ANTLR 3 y C#. Sin embargogae al principio del documento se intenta
describir una foto del proceso general que sigsépsesistemas, ayudara mucho conocer al menos
unos principios basicos de construccion de compitly maquinas virtuales. En cuanto a ANTLR
v3, en este manual no se describen sus caradasigtenerales por lo que se recomienda consultar
documentacién adicional si aun no se ha tenidoimmmgntacto con la herramienta. Seran de mucha
utilidad conocimientos previos sobre otras herrata®e de generacion de compiladores (como
Flex/Bison, Lex/Yacc, JavaCC...), ya que aunquepsiagipios no coincidan con los de ANTLR, si
gue compartirdn muchos conceptos comunes.

¢, Qué pretendemos construir? Los requerimientosaadgs rasgos del lenguaje de script y la
maquina virtual que pretendemos implementar duresteeguia son los siguientes:

- El programa principal se escribira en un solo fiohgestara formado por una sola funcién
principal, es decir, no sera necesario la implea@ah de llamadas a funciones internas
(aunque no se descarta su inclusién en futuragovnes.

- Las variables del lenguaje tendran un tipo dectardd forma explicita y se debera
comprobar en tiempo de compilacién que han sidéatstas y que sus tipos concuerdan
dentro de una expresion o una asignacion.

- Deberan existir los siguientes tipos de datosrenteal, lI6gico y cadena.

- El lenguaje debera proporcionar las instrucciorésiaas: asignaciones, condicionales y
bucles.

- El lenguaje debera proporcionar las expresionémeéticas y l6gicas basicas.

- La maquina virtual se debe poder integrar facilmen cualquier aplicaciéon que exponga
una API, y desde el programa script se podra ictigaa con esta aplicacion mediante
llamadas a las funciones de esta API.

El sistema se escribird completamente en C# yéekianado por los siguientes médulos:

« Un compilador que transformara el cédigo scriphdamguaje intermedio.
- Un ensamblador que generaré el fichero binaricuggbte a partir del codigo intermedio.
- Una maquina virtual capaz de ejecutar el fichereegedo por el ensamblador.

ANTLR sera usado para construir el compilador, gstara formado a su vez por los analizadores
Iéxico y sintactico, un analizador semantico parac&culo y comprobacion de tipos, y un
generador de codigo a partir dbol de sintaxis abstractAST) construido durante las fases
anteriores. Por su parte, tanto el ensamblador dammaquina virtual se escribiran sin utilizar
ninguna herramienta de apoyo, dado que son reta¢irge sencillos de implementar.

Version 0.1 (Borrador) 6

Proyecto FKScript Salvador Gomez

Introduccion a ANTLR

En este capitulo presentaremos la herramienta ANTLR,
gue nos servira de base para el desarrollo de todos los
componentes del compilador para nuestro lenguaje
FKScript.

Version 0.1 (Borrador)

Proyecto FKScript Salvador Gomez

Tomando la definicién de su propia web, ANTLR ea herramienta que proporciona un marco de
trabajo para la construccion de reconocedoregpiaies, compiladores y traductores de lenguajes
a partir de gramaticas enriquecidas con accioneseg&imen proporciona todo lo necesario para el
desarrollo de este tipo de sistemas, entre losm@stantes:

« Construccion de analizadores Iéxicos.

« Construccién de analizadores sintacticos.

« Mecanismos de construccion y recorrido de arbatesimtaxis abstracta (AST).
« Mecanismos de tratamiento de plantillas.

« Mecanismos de deteccion y recuperacion de errores.

Como ventajas adicionales que diferencian a ANTERdas herramientas similares podemos citar
la posibilidad de generar el codigo de salida dareltes lenguajes como Java, C, C++, C# o
Python, y el hecho de disponer de un entorno dandél® propio llamado ANTLRWorks que nos
permitira construir de una forma bastante amigdémdegramaticas de entrada a la herramienta,
proporcionando representaciones graficas de laeg®pes y arboles generados, e incluyendo un
intérprete y depurador propio.

Como recursos para empezar a conocer esta hertamgeomiendo los siguientes:

Web principal de ANTLR

Web principal de ANTLRWorks

Wiki de documentacion (Docs, Tutoriales, Ejemplds..

Libro: The Definitive ANTLR Reference - Building Domain-&pfic Languages

A medida de avancemos en la construccion de nusistiema de scripts trataré de ir comentando
muchas de las posibilidades que ofrece ANTLR pardesarrollo de cada mddulo, publicando
ejemplos y por supuesto los fuentes completosisteinsa.

Version 0.1 (Borrador) 8

Proyecto FKScript

Salvador Gémez

Proceso General FKScript

En este capitulo intentaremos ofrecer una vision de
conjunto de too el sistema que queremos construir, desde
el cédigo de script escrito en el fichero de entrada hasta
los resultados del programa ejecutable. Veremos por tanto
donde y cOmo ubicar las fases de compilacion,
ensamblado y ejecucion de un programa FKScript.

Version 0.1 (Borrador)

Proyecto FKScript

Salvador Gémez

De cara a tener una vision global del sistema quneog a construir vamos a describir brevemente el
proceso general que se seguira durante la confpilaghsamblado y ejecucién de nuestro script, y
cada uno de los modulos que van a intervenir nogeso.

programa . fls

Andlisis
Léxica-
Sintactico

Tabla Simbolos

o= [[

1

4

(program Demo
.abxck 1024
ipush 3

iamdd

programa. fke

Maguina

Virtual

> O O3

Andlisis
Semantico

p——

i (o)

Ensamblador

4

Q1001010010110
LIel0ill 0110100011
1111101 0102101010
Inlniol. ..

—

programa. fk

Como punto de partida se tomard el fichero corbdign
escrito en lenguaje FKScript, el cual sera procesad el
compilador para generar un fichero en lenguajermdio
FKIL. ElI proceso de compilacion se desarrollara
integramente utilizando ANTLR 3 y se dividira ers la
siguientes fases:

1. Andlisis Iéxico-sintactico.
2. Andlisis semantico.
3. Generacion de cadigo.

En primer lugar, losnalisis Iéxico y sintacticoparsearan
todo el cadigo, detectando y reportando posiblesres de
sintaxis, y se generara urbol de sintaxis abstracta
(AST) con todos los elementos relevantes del cédigo del
programa y su estructura completa. Ademas, durahte
andlisis se creara la tabla de simbolos, que cdriténdas

las variables del programa junto a su tipo y suerdnde
orden en el programa.

Si los andlisis léxico y sintactico se realizan esirores se
procedera ahnalisis semanticoque a partir de l@bla de
simbolos y el AST generados en el paso anterior se
encargara de enriquecer dicho AST con el tipo da caa

de las expresiones referenciadas en el programa y
verificard que no existen errores de tipo en eigmd

Posteriormente, y si el andlisis semantico se zzali
correctamente, se ejecutara la fase gimeracion de
cbdigo, que tomard como entrada&BT enriquecido y
generara a partir de él ebdigo intermedio obtenido del
programa, utilizando para ello una serie de plastil
construidas a priori.

Una vez generado el fichero con el cédigo intermesdi
llamara alensamblador, que transformara dicho c6digo en
un fichero binario ejecutable por laaquina virtual.
Durante el proceso de ensamblado se realizaran las
siguientes tareas:

1. Validacion del cddigo intermedio, detectando
posibles errores.

2. Conversion de constantes de tipo cadena a
referencias a memoria dinamica.

3. Conversion de etiquetas a referencias al segmento
de caodigo.

4. Generacion del fichero binario ejecutable.

Por dltimo, una vez generado el fichero binari@lfise pasara éste como entrada mdguina virtual para que sea
ejecutado. Esta ejecutara cada una de las insineidel programa y devolvera como resultado @hdilidato

contenido en la pila al final del programa. Tant@msamblador como la maquina virtual se desaréoilen C# sin
hacer uso de la herramienta ANTLR.

Version 0.1 (Borrador)

10

Proyecto FKScript Salvador Gomez

Andlisis Léxico y Sintactico de FKScript

En este capitulo comenzaremos a describir el primero de
los moddulos que formaran parte del compilador de
FKScript, el analizador Iéxico-sintactico. Comentaremos
aspectos generales de esta fase de la compilacién y
entraremos en detalle con su implementacion sobre
ANTLR v3.

Version 0.1 (Borrador) 11

Proyecto FKScript Salvador Gomez

En esta seccion comentaremos la construccion ntedKNTLR 3 de los analizadores léxico y
sintictico para nuestro lenguaje FKScript.

En primer lugar escribiremos los analizadores lb&sies decir, sin acciones, de forma que podamos
reconocer fragmentos de cddigo escritos en FKSgripbsteriormente definiremos las acciones a
incluir en cada regla para la construccion del lad® sintaxis abstracta (AST) y la tabla de
simbolos que seran utilizados en las fases posdsrite nuestro compilador (analisis semantico y
generacion de codigo). Por dltimo también hablasemoe poco sobre como se informa de los
posibles errores al usuario y cémo los contabilizam

Empecemos. En primer lugar cabe destacar que ANMA_Rermite definir los analizadores Iéxico
(lexen y sintactico parsen en ficheros independientes o en un solo fichesndd aparezcan
ambos. Dado que en nuestro caso ambos analizestoreslativamente sencillos vamos a optar por
la segunda opcion.

Lo primero que debemos especificar en el ficherd ARl serd el tipo de gramatica a defindxér
grammar, parser grammar , O grammar para combinar analisis Iéxico y sintactico en usnmo
fichero) y el nombre que recibira la gramaticanaastro caso "FKVM".

En segundo lugar indicaremos las opciones del zathlr, donde solo incluiremos la opcion

language , que indica el lenguaje en el que se generaradijc de los analizadores, utilizaremos

C#, y el tipo de salida producida por el analizaslotactico, en nuestro caso un arbol AST (opcion
output) de tipoCommonTree (OPCIONASTLabelType).

grammar FKVM;

options {
output=AST,;
ASTLabelType=CommonTree;
language=CSharp;

}

1. Analizador Léxico

El analizador Iéxico se encargara de reconocelpgrae convenientemente los elementos basicos
(token$ del lenguaje que estamos construyendo. En la rizage los casos deberemos distinguir:
literales de los distintos tipos de datos que arign el lenguaje, identificadores (ya sean padabra
clave o no) y deberemos definir qué se entendamd @spacio en blanco entre elementos.

Literales

En FKScript existen 4 tipos de datos: enterosesdbgicos y cadenas. Deberemos definir por
tanto como reconocer cada uno de estos literalesuestro cédigo. Para ayudar a que las
definiciones de estos elelementos no sean demasedplejas y repetitivas definiremos dos reglas
auxiliares (para las cuales se utiliza la palatraedgragment) para reconocer digitos y letras. Una
vez definidas estas reglas auxiliares, el restansay sencillas. Por ejemplo, un literal entero résta
formado por cualquier combinacién de 1 o mas dig{to que se indica con el operador '+' de
ANTLR). Los literales de tipo cadena estaran forazador una doble comilla seguida de cualquier
combinacion de caracteres distintos a dobles casnialtos de linea o tabuladores y por ultimo
otra doble comilla de cierre. Por su parte, umditégico tan sélo podra tomar dos valoress 0
false

Version 0.1 (Borrador) 12

Proyecto FKScript Salvador Gomez

fragment LETRA : 'a'..'z'|'A".."Z" ;
fragment DIGITO : '0"..'9" ;

LIT_ENTERO : DIGITO+;
LIT_REAL : LIT_ENTERO "’ LIT_ENTERO ;
LIT_CADENA : ™ (~("[\n[\r[\t))* ™ ;

LIT_LOGICO : 'true'|'false’;
Identificadores

Los identificadores en FKScript, como ya se ind@v la especificacion del lenguaje, estaran
formados por cualquier letra o caracter subrayadmida de cualquier combinacién de digitos,
letras o caracteres de subrayado.

IDENT : (LETRA|'_")(LETRA|DIGITO|'_")*;
Comentarios

Los comentarios permitidos seran de una sola lirssautilizara la sintaxis de C++ o Java, es decir,
precederlos de los caracteres "//". Como puedergdrse en la regla se le indicard ademas a
ANTLR que estogokensno deben ser pasados al analizador sintacticaganq son de utilidad.
Esto lo indicaremos mediante la acc#@hannel=HIDDEN;

COMENTARIO : /' (~(\n'|\r))* \r'2 \n' {$chan nel=HIDDEN;};
Espacio en blanco

Se considerara espacio en blanco entre elementdenggiaje a toda combinaciéon de caracteres
espacio, saltos de linea o tabuladores. Ademas elgmentos tampoco seran pasados como tokens
al analizador sintactico.

WS : (" '[\r[\n'['\t)+ {$channel=HIDDEN;} ;
2. Analizador Sintactico

A partir de los tokens pasados por el analizadxicde el analizador sintactico se encargara de
reconocer las combinaciones correctas de tokenfogmen instrucciones o expresiones validas en
nuestro lenguaje. Por tanto deberemos definir esi# estructura general de un programa FKScript
y la estructura concreta de cada una de las caogines (instrucciones y expresiones) aceptadas
en el lenguaje.

Programa

Tal como se indicé en la especificacion del lenguan programa FKScript estara formado por una
serie de declaraciones de funciones API (opciopaeguidas del programa principal que se
identifica mediante la palabra clamegram seguida de un identificador que indicara el nonadele
programa y una lista de instrucciones delimitadasllaves ({' y }'). Las instrucciones a su vez
podran ser: declaraciones, asignaciones, condie®iiabucleswhile o instrucciones de retorno.
Abajo podemos ver lo sencillo que resulta defiona esto en ANTLR v3, y lo que es mejor,
utilizando la misma sintaxis usada ya para el aadér |éxico.

Version 0.1 (Borrador) 13

Proyecto FKScript Salvador Gomez

programa : declaraciones_api principal ;

declaraciones_api : declaracion_api* ;

declaracion_api : 'api' tipo IDENT '(* lista_decl ')
principal : 'program’ tipo IDENT '{' lista_instrucc iones '}';
lista_instrucciones : instruccion* ;

instruccion : inst_decl
| inst_asig
| inst_if
| inst_while
| inst_return
| inst_expr;

Instrucciones

La definicion de las instrucciones no implica ninguificultad. Asi, por ejemplo, la instruccion IF
de nuestro lenguaje estara formada por la paldbve i€ , una expresion (regla que definiremos
mas tarde) entre paréntesis, una lista de insbmesipara el caso de que se cumpla la condicion, y
opcionalmente (operaderde ANTLR) otra lista de instrucciones para el cdsaue no se cumpla
dicha condicién precedida de la palabra clave . Notese como las palabras clave y simbolos de
puntuacion los indicamos directamente entre comilimples, los tokens devueltos por el
analizador léxico con mayusculas y las reglas nigizador sintactico en minusculas.

inst_decl : tipo IDENT ;' ;

inst_asig : IDENT '=' expresion ;' ;

inst_if: 'if ‘(" expresion ") '{' lista_instrucc iones '}' else_otras? ;
else_otras : 'else' '{' lista_instrucciones '} ;

inst_while : ‘'while' '(* expresion ')’ {' lista_in strucciones '}';
inst_return : 'return’ expresion ;' ;

inst_expr : expresion ;' ;
Expresiones

La definicion de las expresiones en ANTLR si es mtsesante. Dado que ANTLR 3 no porvee
ningin mecanismo explicito para indicar la prece@dede cada uno de los operadores debemos
buscar la forma de que ésta se tenga en cuenta poopia definicion de las reglas. Para ello, el
método utilizado sera definir cada una de las pesiéxpresiones (segun operadores) de forma que
un tipo de expresion quede definido en funcién sigliente tipo en el orden de precedencia
(siempre de menor a mayor). Asi, por ejemplo, ctesooperaciones de multiplicacion y division
tienen mayor precedencia que la suma y la restaienos ésta Ultima en funcion de la primera,
asi nos aseguramos de que las operaciones serasiecpre de forma correcta.

expMasMenos : expMultDiv (
(+'|'-") expMultDiv)* ;

Version 0.1 (Borrador) 14

Proyecto FKScript Salvador Gomez

Para el resto de expresiones se seguiria la mégnea:

expresion : expOr ;
expOr : expAnd ([|'* expAnd)* ;
expAnd : expComp (‘&&” expComp)* ;

expComp : expMasMenos (
(==""="">"I'<'|'>="I'<=") expMasMenos)*]

expMasMenos : expMultDiv (
(+'|'-") expMultDiv)* ;

expMultDiv : expMenos (
(*'['1") expMenos)* ;

expMenos : '-' expNo
| '+'? expNo ;

expNo : 'I'? acceso ;

acceso : IDENT
| literal
| lamada
| '(expresion")';

Llamadas a funciones

Las llamadas a funcién seguiran la sintaxis clastrapuesta por el nombre de la funcién seguido
de una lista de parametros (expresiones) entrafesie y separados por comas.

llamada : IDENT (' lista_expr)" ;

lista_expr : expresion (',' expresion)*
| //Sin parametros ;

Otras reglas

Por ultimo, tan so6lo quedan definir el resto ddag@uxiliares, como los tipos de datos o los tipos
de literales. Estas reglas suelen ser muy sengidague se limitan a enumerar cada uno de los
elementos aceptados en el lenguaje.

tipo : 'int'|'float'|'string'|'bool’|'void’ ;

literal : LIT_ENTERO
| LIT_REAL
| LIT_CADENA
| LIT_LOGICO ;

Programa de prueba

Hemos finalizado nuestros analizadores basicos.eStimya deberiamos ser capaces de comprobar
si la sintaxis de un programa escrito en FKScripd @0 valida. Para ello, necesitamos disponer de

un programa de prueba, en el que se llame conuenmente a las clases generadas por ANTLR a

partir de nuestra gramatica.

Version 0.1 (Borrador) 15

Proyecto FKScript Salvador Gomez

using System;

using Antlr.Runtime;

using Antlr.Runtime.Tree;
using Antlr.StringTemplate;

namespace PruAntlr

class Program

{
static void Main(string[] args)
{
ANTLRFileStream input = new ANTLRFileSt ream("prueba.fks");
FKVMLexer lexer = new FKVMLexer(input);
CommonTokenStream tokens = new CommonTo kenStream(lexer);
FKVMParser parser = new FKVMParser(toke ns);
FKVMParser.programa_return result = par ser.programay);
Console.WriteLine("Analisis finalizado. ");
}
}

}

De esta forma, utilizando el programa principakant y un fichero de entrada valido como el que
se muestra a continuacion deberiamos obtener conva 8alida del programa el mensaje de
"Analisis finalizado", ya que si los analizadoresencuentran ningun error no muestran nada a la
salida.

program Prueba

t
int a;
a=1;

}

Sin embargo, si introducimos un error en el fichéeoentrada, por ejemplo en este caso hemos
eliminado la variable 'a' de la primera declaracignanalizador sintactico deberia mostrarnos el
mensaje de error correspondiente.

program Prueba

t
int ;
a=1;

}
El resultado del analisis deberia ser el siguiente:

line 2:5 mismatched input ;' expecting IDENT
Analisis finalizado.

En el mesaje se informa al usuario de que en leipos de la linea 2 del fichero de entrada se ha
encontrado un caracter ;' cuando se esperabantificador.

3. Recuento y reporte de errores

Vamos a ir ahora un poco mas alla y ademas de andsr errores al usuario vamos a mostrar un
ultimo mensaje con el nimero de errores encontrpdofos analizadores Iéxico y sintactico. Para
ello, la técnica que vamos a utilizar sera soblesdds métodos de ANTLR encargados de generar
los mensajes de erroBdiErrorMessage). La modificacion que vamos a realizar a estoodud

Version 0.1 (Borrador) 16

Proyecto FKScript Salvador Gomez

serd simplemente incrementar una variable progla gaz que sean llamados y llamar por altimo
al metodo padre para que ANTLR realice el resttateEas necesarias. El codigo de estos métodos y
la declaracion de nuestras variables lo incluireerokas seccione®lexer::members Y @members

@lexer::members {
public int numErrors = 0;

public override string GetErrorMessage(Recognit ionException e, string[]
tokenNames)

{

numErrors++;
return base.GetErrorMessage(e,tokenNames);

}
}

@members {
public int numErrors = 0;

public override string GetErrorMessage(Recognit ionException e, string[]
tokenNames)

{

numErrors++;
return base.GetErrorMessage(e,tokenNames);

}
}

A partir de este momento, desde nuestro programmaipal tendremos acceso a nuestra nueva
variable que tras llamar a los analizadores comén@l nimero de errores encontrados. Asi,
podriamos modificar la Gltima linea de nuestro prota principal por la siguiente:

Console.WriteLine("Analisis finalizado. Errores: " + parser.numEerrors);
Y ante este fichero de entrada:

program Prueba

La salida seria la siguiente:

line 2:5 mismatched input ;' expecting IDENT
line 3:2 mismatched input '=' expecting '}'
Analisis finalizado. Errores: 2

4. Construccion del AST

Una vez que ya somos capaces de reconocer corgttaficheros de entrada validos para nuestro
lenguaje y de informar de los posibles erroresaso cle producirse el siguiente paso sera modificar
convenientemente la gramatica para construir dergirdnalisis el arbol de sintaxis abstracta (AST)

y la tabla de simbolos que seran utilizados panalizador semantico y el generador de codigo.

ANTLR v3 proporciona dos mecanismos basicos detamon de arboles AST:

1. Mediante operadores.
2. Mediante reglas de reescritura.

Version 0.1 (Borrador) 17

Proyecto FKScript Salvador Gomez

Ambos mecanismos pueden mezclarse en una mismatiram el uso de uno u otro dependera de
la complejidad del arbol que queramos construirn&gstro caso mezclaremos ambos métodos por
lo que veamos en primer lugar un par de ejemplos.

La construccion mediante operadores consiste duiriren las propias reglas del analizador una
serie de operadores que indiquen a ANTLR como ttakerlos para construir el arbol devuelto por
la regla. Estos operadores son tan solo dgst . El primero de ellos se utilizara para indicar qué
elemento de la regla se utilizara como raiz dedlgtbdos los demas pasaran a ser hijos directos de
éste) y el segundo operador se afadira a los etesngne no deben formar parte del arbol.

Asi, por ejemplo, en la reglast while ~ podremos indicar que la palabra claxde se utilizara
como raiz del arbol y que los paréntesis y llavesleben incluirse en el arbol ya que no aportan
ningun valor para las fases siguientes.

inst_while : 'while'* '('! expresion)"l {'! list a_instrucciones '} ;

En reglas mas complejas o donde haya que utiliados ficticiogelementos que no aparecen en la
regla pero se incluyen en el arbol AST por convasia@ se pueden utilizar las reglas de reescritura
de arboles. Estas se incluyen a la derecha degla peecedida por el operader y utilizan la
sintaxis siguiente:

regla -> ~(raiz hijol hijo2 ...)

En nuestro caso podemos poner como ejemplo la pegka definir las asignacionest_asig
donde indicaremos mediante una regla de reeschguaajueremos construir un arbol con un nodo
raiz ficticio llamadoASIGNACION Y dos hijos, uno con el identificador y otro candxpresion
asignada.

inst_asig : IDENT '=' expresion ;' -> ~(ASIGNACION IDENT expresion);

Los nodos ficticios deben declararse al princigdalgramatica en la secciamens . En nuestro
caso utilizaremos los siguientes:

tokens {
PROGRAMA,;
DECLARACION;
DECLARACIONPARAM;
LISTADECLARACIONESAPI;
DECLARACIONAPI;
ASIGNACION;
MENOSUNARIO;
LISTAINSTRUCCIONES;
LLAMADA,;
LISTAEXPRESIONES;
LISTAPARAMETROS;

}

5. Construccion de la Tabla de Simbolos

Otra de las tareas a realizar durante el analisigcsico sera la construccién de la tabla de
simbolos. Esta estructura debera contener al Zeraél analisis una relacion facilmente accesible
gue contenga todos los identificadores utilizadosek programa junto cualquier informacién
asociada a dicho identificador que sea relevanta lpa etapas posteriores, como por ejemplo el
tipo de dato de la variable.

Version 0.1 (Borrador) 18

Proyecto FKScript Salvador Gomez

En nuestro caso, construiremos una tabla de simlumple contenga cada identificador junto a su
tipo y su numero de orden dentro del programa. Blbwadefiniremos en primer lugar una clase
para encapsular toda la informacion asociada aidadéficador:

public class Symbol

{

public int numvar; //Numero de orden la variab le
public string type; //Tipo de la variable

/[Constructor de la clase
public Symbol(string t, int n)

type = t;
numvar = n;

}
}

El siguiente paso sera declarar la estructura cqueendrd la tabla de simbolos. Nosotros
utilizaremos una coleccion genérica de tipaionary con claves de tipstring para el nombre
de a variable y valores de tigymbol que acabamos de crear. La declaracion de estatestr
debe incluirse en la secciG@membersy los includes necesarios en la secci@header de la
gramatica.

@header {
using System.Collections.Generic;

}

@members {
public Dictionary<string,Symbol> symtable = new Dictionary<string,Symbol>();
int numVars = 0;

-

En nuestro lenguaje FKScript, el Unico lugar valibmde pueden definirse variables es dentro de
las declaraciones, por lo que la Unica regla daedemos ir actualizando la tabla de simbolos sera
inst_decl . Por tanto, dentro de esta regla, ademas de Il degeescritura para construir el arbol
AST deberemos incluir una accion (entre llaves)deéose afiada el identificador declarado a la tabla
de simbolos. Esta accion se limitara a comprobal isientificador ya existe en la tabla y afiadirlo
en caso de no existir. Veamos cOmo:

inst_decl : tipo IDENT ;' {
if(lsymtable.ContainsKey($IDENT.text))

symtable.Add($IDENT .text, new Symbol($ti po.text, numVars++));

}
} -> A(DECLARACION tipo IDENT);

6. Finalizando el analizador |éxico-sintactico

Una vez completada la implementacion de nuestmadjiea tan sélo nos queda probarla mediante
el programa principal que ya comenzamos en apartadderiores. En esta ocasion vamos a
modificarlo para que al finalizar el analisis nosiestre el arbol AST construido y la tabla de
simbolos con nuestras variables y su informaciogiada.

Version 0.1 (Borrador) 19

Proyecto FKScript

Salvador Gomez

using System;

using Antlr.Runtime;

using Antlr.Runtime.Tree;

using Antlr.StringTemplate;

using System.Collections.Generic;

namespace PruAntlr

{

class Program

{

static void Main(string[] args)

}
}
}

ANTLRFileStream input =
new ANTLRFileStream("C:\\prua
FKVMLexer lexer = new FKVMLexer(input);

CommonTokenStream tokens = new CommonTo
FKVMParser parser = new FKVMParser(toke
FKVMParser.programa_return result = par

if (parser.numErrors == 0)

{

nti\\prueba.fks");

kenStream(lexer);
ns);
ser.programa();

CommonTree t = (CommonTree)result. T ree;
Console.WriteLine("Arbol AST:");

Console.WriteLine(t. ToStringTree() +"\n");
Console.WriteLine("Tabla de Simbolo s:");
foreach (string k in parser.symtabl e.Keys)

Console.WriteLine(((Symbol)pars
n - n + k + n _> n + ((Symbol
}

}

else

Console.WriteLine("Errores: " + par

}

Console.ReadLine();

er.symtable[k]).numvar +
)parser.symtable[K]).type);

ser.numErrors);

El arbol AST lo obtenemos mediante la propiedast del objeto que representa a la regla
principal de nuestra gramatipegrama_return 'y lo imprimimos por pantalla mediante el método
toStringTree() . Por su parte, a la tabla de simbolos podemoslaccemo a un atributo mas del

objetoparser ya que la declaramos en la seca@nembers

De esta forma, para el siguiente fichero de entrada

program Prueba {
int a;
float b;

a=1;

}

Version 0.1 (Borrador) 20

Proyecto FKScript

Salvador Gémez

Obtendriamos la siguiente salida (la formateo paeasea legible):

Arbol AST:
(program Prueba
(LISTAINSTRUCCIONES
(DECLARACION int a)
(DECLARACION float b)
(ASIGNACION a 1)

)
)

Tabla de Simbolos:
0-a->int
1-b -> float

Version 0.1 (Borrador)

21

Proyecto FKScript

Salvador Gémez

Andalisis Semantico de FKScript

En este capitulo describiremos la segunda fase dentro del
proceso de compilacién de FKScript, el andlisis semantico.
Comenzaremos describiendo qué tipo de tareas se
realizan durante esta fase y detallaremos su
implementacion sobre ANTLR v3.

Version 0.1 (Borrador)

22

Proyecto FKScript Salvador Gomez

Dedicaremos esta seccion a comentar todos lostasperacticos del desarrollo de la etapa de
andlisis seméantico del compilador para nuestrouajegFKScript. Veremos en primer lugar las
modificaciones necesarias que hay que realizarrtal 8AST construido en la fase anterior,
posteriormente describiremos el tipo de comprolmas@ue se realizaran en esta fase del analisis y
por ultimo veremos como podemos implementarlasfddnLR.

Todas las tareas del analizador semantico seagatiznediante el recorrido de arboles AST, lo que
en ANTLR se llamaree grammar . Veremos mas adelante como implementar un analizadel
este tipo con ANTLR v3.

1. Tareas del analisis semantico

Durante la etapa de analisis semantico nuestro itaop realizara una serie de comprobaciones
gue ya nada tienen que ver con la sintaxis deligegy que en nuestro caso seran las siguientes:

- Comprobacion de la existencia de variables y fureso
« Célculo de tipos en expresiones.

« Chequeo de tipos en instrucciones.

+ Chequeo de tipos en expresiones.

Iremos enumerando todas esas comprobaciones a anaflié vayamos comentando la
implementacion sobre ANTLR por lo que no entrarepasel momento en mas detalle.

2. Enriqueciendo los nodos del arbol AST

Por defecto, el tipo de arbol construido por ANTIER del tipoCommonTree cuyos nodos
Unicamente contienen un tipo (atribatge) y un valor (atributarext). Esta informacion no suele
ser suficiente en la mayoria de las ocasiones@qué se hace necesario definir un tipo de arbol
personalizado con toda la informacién que necesiéstro compilador.

En nuestro caso vamos a necesitar para los elesnemples (identificadores y literales) toda la
informacion contenida en la clasymbol que ya definimos y dos campos adicionales para
almacenar el tipo de las expresiones compuestgsype Yy el tipo de sus subexpresiones
expSecType . Para conseguir esto simplemente tendremos queirdeha clase derivada de
CommonTree que contenga toda esta informacion y un constriedtecuado que inicialice todo lo
necesario y llame al constructor de la clase padeamos cémo quedaria esta clase a la que
[lamaremoskvmAST.

using Antlr.Runtime;
using Antlr.Runtime.Tree;

public class FkvmAST : Antlr.Runtime.Tree.CommonTre e

{
public Symbol symbol;

public string expType = "";
public string expSecType ="";

public FkvmAST(IToken t) : base(t)

/[Nada que inicializar

}
}

Version 0.1 (Borrador) 23

Proyecto FKScript Salvador Gomez

Una vez tenemos definida la clase que describiestms nodos del arbol AST debemos indicar a
ANTLR que use ésta para construir el arbol durdatdase de analisis sintactico. Para ello
deberemos modificar el valor asignado a la ops®rLabelType indicando nuestra nueva clase.

options {
Output=AST;
ASTLabelType=FkvmAST;
language=CSharp;

}

Pero no nos basta con esto. Debemos crear tamiiadaptador para nuestro nuevo tipo de arbol.
Este adaptador debe derivar de la clasemonTreeAdaptor Yy tan sélo deberemos redefinir el
métodoCreate para devolver un arbol de tipevmAST. Veamos como quedaria nuestro adaptador:

class FKTreeAdaptor : CommonTreeAdaptor

public override object Create(IToken payload)

{
return new FkvmAST (payload);

}
}

Una vez creado el nuevo adaptador debemos indiBATAR en el programa principal que debe
hacer uso de éste para la construccion del arbasindaxis abstracta durante la fase de analisis
sintactico. Para ello asignaremos la propiettadadaptor de nuestro parser antes de comenzar el
analisis:

CommonTokenStream tokens = new CommonTokenStream(le Xer);
FKVMParser parser = new FKVMParser(tokens);

ITreeAdaptor adaptor = new FKTreeAdaptor();
parser.TreeAdaptor = adaptor;

FKVMParser.programa_return result = parser.programa 0;
3. Implementacion del analizador en ANTLR v3

Como indicamos anteriormente, para la fase desm&kmantico vamos a utilizar un analizador de
arboles AST, lo que en ANTLR se define come grammar . Las opciones de este analizador
seran las mismas que las establecidas en la feex@ancon la excepcion de la opcitokenVocab

gue indicara a ANTLR que debe utilizar los misnmasehs que se generaron para la fase de analisis
sintictico. De esta forma, ANTLR importara estdets desde el fichemkvM.tokens generado

en la fase anterior.

tree grammar FKVMSem;

options {
tokenVocab=FKVM;
ASTLabelType=FkvmAST;
language=CSharp;

}

Por otro lado, el analizador semantico recibira e@ntrada, ademas del arbol AST, la tabla de
simbolos generada anteriormente por lo que delemiardrse la variable que la contendra. Como
siempre haremos esto en las seccioB@sader y @members Incluiremos también la variable
numErrors para ir realizando el recuento de errores de f@andoga a la fase anterior.

Version 0.1 (Borrador) 24

Proyecto FKScript Salvador Gomez

@header {
using System.Collections.Generic;

}

@members {
public Dictionary<string,Symbol> symtable;
public int numErrors = 0;

}

El paso de parametros a una regla en ANTLR searaicontinuacion de la regla y entre corchetes,
y la asignacion de dicho parametro a nuestra Marigberna la podemos realizar en la seccion
@init de nuestra regla principal. Vemos como quedanidaparimera regla de nuestra gramatica:

programa[Dictionary<string,Symbol> symtable]
@init {
this.symtable = symtable;

: (PROGRAMA declaraciones_api principal) ;

En el Ultimo apartado de esta seccidon veremos qomdemos pasar en el programa principal la
tabla de simbolos construida durante el analisidadiico como parametro del analizador
semantico.

4. Calculo y chequeo de tipos

El calculo y chequeo de tipos de una expresidreakizara comenzando por las expresiones mas
simples de nuestra gramatica, es decir, los ldésralidentificadores. Una vez calculado el tipo de
una expresion se asiganara éste a su nodo delyadodmas se devolvera como valor de retorno
para que pueda ser consultado por la reglas superola actual. El valor de retorno se indica en
ANTLR mediante la clausuleturns seguida de la declaracion entre corchetes deriabla a
devolver.

expresion returns [String type]

Esta variable se inicializara en la seco@init de la regla y se asignara convenientemente dentro
de cada subregla. Ademas, dentro de esta seccrdréta obtendremos una referencia al nodo
principal del arbol de la expresion para poder resig al fializar la regla. Este nodo lo
obtendremos mediante el métadrg) del objetoinput , que representa la secuencia de nodos del
arbol que estamos analizando. De esta forma, eilesitgg nhodo de la secuencia, lo obtendremos
mediante la llamadiaput.LT(1) . Por ultimo, en la seccié®@after de la regla asignaremos a este
nodo el tipo calculado y que sera devuelto comarmet Veamos pues como queda la regla por el
momento:

expresion returns [String type]
@init {

$type="",

FkvmAST root = (FkvmAST)input.LT(1);
}

@after {
root.expType = $type;

Todo el célculo de tipos se realizara en la reglanaliza las expresiones, donde estan contenidos
tanto los elementos mas simples como los literalédentificadores, como las expresiones mas
complejas, donde habra que calcular su tipo enidonde los elementos que la componen.
Empecemos por tanto por los elelemtos mas sencillos

Version 0.1 (Borrador) 25

Proyecto FKScript Salvador Gomez

Literales

El calculo del tipo de un literal sera tan sencdtomo consultar el tipo de token devuelto por el
analizador sintactico y asignar directamente ua tipotro en la subregla correspondiente. Como
puede verse en el cddigo siguiente, la técnicaidagen la reglditeral para devolver el tipo
calculado a la regla superior y asignarlo a sualemdo del arbol es la misma que la descrita para
las expresiones.

expresion returns [String type]

| literal {$type=$literal.type;}

literal returns [String type]
@init {
$type="";
FkvmAST root = (FkvmAST)input.LT(1);

}
@after {
root.expType = $type;

- LIT_ENTERO {$type="int";}

| LIT_REAL {$type="float";}

| LIT_CADENA {$type="string";}
| LIT_LOGICO {$type="bool";}

Identificadores

El calculo de tipo para un identificador es mas#lenaun que en el caso de los literales ya que no
basaremos directamente en el tipo almacenado &@bla de simbolos para dicho identificador.
Ademas, en caso de no encontrar en la tabla dekisnalgun identificador informaremos del error
al usuario, de forma que no permitiremos en nudstrguaje el uso de variables que no hayan sido
declaradas.

expresion returns [String type]

| IDENT{
if(symtable.ContainsKey($IDENT.text))

{
root.symbol = (Symbol)symtable[$IDEN T.text];

$type=root.symbol.type;
}
else

registrarError(root.Line, "ldentifie r" + $IDENT.text + " has
not been declared.");

}
}
| literal {$type=$literal.type;}

Llamadas a funcién externa

El tipo de una llamada a una funcién externa seutalde la misma forma que el de los
identificadores ya que el mecanismo que hemosadit para registrar su tipo durante el andlisis
sintactico ha sido el mismo, la tabla de simbokesmmos por tanto coOmo queda esta regla:

Version 0.1 (Borrador) 26

Proyecto FKScript

Salvador Gomez

expresion returns [String type]

| IDENT {root.symbol = (Symbol)symtable[$IDENT.
$type=root.symbol.type;}

| literal {$type=$literal.type;}

| lamada {$type=$literal.type;}

llamada returns [String type]

@init {

$type:"";

FkvmAST root = (FkvmAST)input.LT(1);

}
@after {
root.expType = $type;

}
: N(LLAMADA IDENT lista_expr) {
if(symtable.ContainsKey($IDENT.text))

root.symbol = (Symbol)symtable[$IDENT.
$type=root.symbol.type;

else

{
registrarError(root.Line, "Api functio
not been declared.");

}
H

Expresiones complejas

text];

text];

n" + $IDENT.text + ™ has

Una vez hemos calculado el tipo de las expresior@ssimples de nuestro lenguaje ya deberiamos
ser capaces de calcular y chequear el de una expresmpuesta por estos elementos. Asi, por
ejemplo, para las expresiones légicas considerazaque su tipo es siempbeol y que ésta es
correcta si los tipos de las dos subexpresionesigmales 0 uno entero y otro real. Esto lo

comprobaremos mediante el métadmprobarTipoExpComp(tipol, tipo2)

gue definiremos en

la seccibn@membersy si se determina que la combinacion de tipos s1ccerecta se reportara al

usuario el error correspondiente.

expresion returns [String type]

| "(opComparacion el=expresion e2=expresion) {
$type="bool";

if(lcomprobarTipoExpComp($el.type, $e2.

registrarError(root.Line, "Incorre

}

}
| IDENT {root.symbol = (Symbol)symtable[$IDENT.
$type=root.symbol.type;}
| literal {$type=$literal.type;}
| lamada {$type=$literal.type;}

@members {
public Dictionary symtable;
public int numErrors = 0;

public bool comprobarTipoExpComp(string t1, string
{

type))

ct types in expression.");

text];

2)

Versiéon 0.1 (Borrador)

27

Proyecto FKScript Salvador Gomez

bool res = false;

if(t1.Equals(t2) ||
(t1.Equals("int") && t2.Equals("float")) ||
(t1.Equals(“float") && t2.Equals(“int")))

{
res = true;
}
return res;
}
}

El resto de expresiones incluidas en el analizéelquresiones aritméticas, operador menos-unario
y operador no-logico) las definiremos de forma agai

expresion returns [String type]
: N(opComparacion el=expresion e2=expresion) {

$type="bool";
if(lcomprobarTipoExpComp($el.type, $e2. type))
{
registrarError(root.Line, "Incorre ct types in expression.");

}
| *(opAritmetico el=expresion e2=expresion) {
$type=%el.type;

if(lcomprobarTipoExpArit($el.type, $e2. type))

registrarError(root.Line, "Incorre ct types in expression.");

}

}
| (MENOSUNARIO el=expresion) {
$type=%el.type;

if(!($el.type.Equals(int") || $el.type .Equals("float")))
{

registrarError(root.Line, "Incorre ct types in expression.");

}

| A(! el=expresion) {
$type=%el.type;

if(!$el.type.Equals("bool"))
{

registrarError(root.Line, "Incorre ct types in expression.");

}

}
| IDENT {root.symbol = (Symbol)symtable[$IDENT. text];
$type=root.symbol.type;}
| literal {$type=$literal.type;}
| lamada {$type=$literal.type;}

Instrucciones

El tipo de algunos de los elementos contenidosisinuicciones de nuestro lenguaje también debe
ser comprobado durante la fase de analisis sernaAist, por ejemplo, en las instrucciones de
asignacion deberemos comprobar que el tipo dedeesin derecha coincide con el de la variable
gue estamos asignando o que al menos es compd#ilipo de la variable lo recuperaremos de la

Version 0.1 (Borrador) 28

Proyecto FKScript Salvador Gomez

tabla de simbolos y el de la expresién accediendo atributostype que ya deberia haber sido
calculado en la reglexpresion . Las combinaciones validas de tipos las comprobasecomo en
el caso de las expresiones mediante un métodoidiefan la seccior®@members Veamos como
quedaria esta regla:

inst_asig
@init {
FkvmAST root = (FkvmAST)input.LT(1);

: "(ASIGNACION IDENT el=expresion) {
root.expType = $el.type;

if(symtable.ContainsKey($IDENT.text))

{
$IDENT.symbol = (Symbol)symtable[$ID ENT.text];
if('lcomprobarTipoAsig(root.expType, $IDENT.symbol.type))
{
registrarError(root.Line, "Inco rrect type in assignment.");
}
else
{
registrarError(root.Line, "ldentifie r' + $IDENT.text +
" has not been declared.");
}

h

Por su parte, para las instrucciones IF y WHILEedeimos comprobar que la condicion viene
expresada por una expresion de tipo logico. Pawataah s6lo deberemos comprobar el atributo
$type de la expresion que hemos calculado en la reggeesion . Veamos por ejemplo la
instruccion IF:

inst_if : A(ins="if' el=expresion lista_instruccion es lista_instrucciones) {
if('$el.type.Equals("bool"))
{

registrarError($ins.Line, "Incorrect ty pe in IF instruction.");
}
-

5. Programa principal

Una vez finalizado nuestro analizador semanticoepus llamarlo desde el programa principal
pasandole la tabla de simbolos calculada duraritesd¢aanterior. Para ello, simplemente se creara el
objeto FKVMSem con las estructuras necesarias gentes del analisis sintactico y se llamara a su
meétodo principal cuyo nombre debe coincidir comelgla principal de nuestra gramatica, en este
casoprograma() . La tabla de simbolos se le pasara como parardetssta llamada ya que asi lo
definimos en la gramatica.

/IAnalisis léxico semantico

FKVMLexer lexer = new FKVMLexer(input);

CommonTokenStream tokens = new CommonTokenStream(le Xer);
FKVMParser parser = new FKVMParser(tokens);

parser.TreeAdaptor = adaptor;

FKVMParser.programa_return result = parser.programa 0;

/ISi no hay errores |éxicos ni sintacticos ==> Anal isis Semantico
if (lexer.numErrors + parser.numEgrrors == 0)

{

Version 0.1 (Borrador) 29

Proyecto FKScript Salvador Gomez

/[Analisis Semantico
CommonTree t = ((CommonTree)result.Tree);

CommonTreeNodeStream nodes2 = new CommonTreeNod eStream(t);
nodes2.TokenStream = tokens;

FKVMSem walker2 = new FKVMSem(nodes?2);
walker2.programa(parser.symtable);

Version 0.1 (Borrador)

30

Proyecto FKScript

Salvador Gémez

Generacion de Codigo de FKScript

En este Ultimo capitulo dedicado a la compilacion de
FKScript describiremos la fase de generacion de codigo
para nuestro lenguaje. Comenzaremos haciendo una bve
resefia a la maquina virtual y posteriormente detallaremos
la implementacioén sobre ANTLR v3.

Version 0.1 (Borrador)

31

Proyecto FKScript Salvador Gomez

En esta seccion abordaremos la dltima fase delepoode compilacion de nuestro lenguaje
FKScript, la generacion de cddigo. Este paso sargara de generar el cédigo intermediIL a
partir del arbol de sintaxis abstracta generadia éase de analisis sintactico y enriquecido d@rant
el analisis semantico.

1. Maquina Virtual FKVM

Antes de comenzar a ver cOmo se va a realizamargeion de codigo para los distintos elementos
de nuestro lenguaje debemos comentar algunos etetatierca de la maquina virtual que va a
ejecutar nuestro cédigo y cuya implementacion veeemas adelante.

Es importante indicar que nuestra maquina virteal ddelante VM) estara basada en la pila, en
contraposicidon a maquinas virtuales mas clasicaadas en registros. Con esto queremos decir que
todas las operaciones ejecutadas por la VM sezegali sobre datos que se encuentren con
anterioridad en las posiciones superiores de géagbien que afectaran de una u otra forma al valor
almacenado en la cima de la pila. Una vez ejedad@struccion la VM se encargara de eliminar
automaticamente sus parametros de la pila si essago y de apilar el resultado obtenido si
procede segun el tipo de instruccion.

Esto se entiende mas facilmente con un ejemplo.efites como muestra la instruccién IADD para
realizar la suma de dos enteros. Para realizasasta nuestro programa debera colocar en la cima
de la pila sus dos parametros, bien mediante lgacde un valor inmediato (PUSH) o bien
recuperando el dato de alguna variable (LOAD). Uem apilados los dos parametros ya se podra
ejecutar la instruccion IADD para realizar la sumayo resultado se almacenara en la cima de la
pila tras haber eliminado en primer lugar los dasmetros. Veamoslo graficamente:

2+3
ipush 2 7
3
ipush 3 . .
Antes de iadd .
ladd Después de iadd
5

2. Primeros pasos

El paso de generacion de cédigo se implementaréerdir uso de ANTLR v3, mediante una
gramatica de tiptree grammarl igual que la fase anterior, y utilizando ladiiaStringTemplate
para generar los ficheros de salida a partir detipkes predefinidas.

Empecemos como siempre por ver las opciones dbtader. En este caso, las opciones seran las
mismas que las definidas en el analizador semamt#&souna adicional para indicar que la salida no
serd un arbol AST sino una plantilla de StringTeatel Esta Ultima opcion se indicara con
output=template

Version 0.1 (Borrador) 32

Proyecto FKScript Salvador Gomez

tree grammar FKVMGen;

options {
tokenVocab=FKVM;
ASTLabelType=FkvmAST;
output=template;
language=CSharp;

En los siguientes apartados veremos como defimrAWTLR+StringTemplate la generacion de
codigo para cada uno de los elementos significatiMonuestro leguaje FKScript.

3. Generacion de cadigo para literales e identifickores

Vamos a empezar a comentar el proceso de anatisigep expresiones mas simples del lenguaje
como son los literales y los identificadores.

Veamos en primer lugar un ejemplo de como se trddua codigo intermedio una sencilla
instruccion de asignacion en la que tan solo irdaesun literal entero:

/IC6digo en FKScript
int a; //Variable nimero 1
a=3;

#Cadigo traducido a FKIL
i push 3 #Almacena el valor 3 en la cima de la pila
istore 1 #Almacena la cima de la pila en la variab le 1

Como puede observarse, para el literal la Unicauosion de codigo FKIL que se genera es una
instruccion de tipo PUSH con su tipo correspondigah este caso de tipo entero (IPUSH), seguida
del literal correspondiente. La plantilla a defipara la generacion de cédigo de un literal entero
ser& por tanto de la siguiente forma:

lit_entero(v) ::="ipush <v>"

Para el resto de tipos de literales estas plasmskaan analogas, cambiando Unicamente el tipa de |
instruccion PUSH. Por su parte, en la gramética IBRITan s6lo deberemos indicar la plantilla
correspondiente dependiendo del tipo de literalolsi le pasaremos como argumento el texto del
propio literal:

expresion

|literal -> {$literal.st}

literal : LIT_ENTERO -> lit_entero(v={$LIT_ENTERO.t ext})
| LIT_REAL -> lit_real(v={$LIT_REAL.text})
| LIT_CADENA -> lit_cadena(v={$LIT_CADENA.t ext})
| LIT_LOGICO -> lit_logico(v={$LIT_LOGICO.t ext})

Ampliemos ahora el ejemplo anterior para que tamliméervenga un identificador en la parte
derecha de una asignacion y veamos cOmo quedaridsieccion a cédigo FKIL:

/ICodigo en FKScript

int a; //Variable nimero 1
int b; //Variable nimero 2
a=3;

Version 0.1 (Borrador) 33

Proyecto FKScript Salvador Gomez

b=a;

#Caodigo traducido a FKIL

ipush 3 #Almacena el valor 3 en la cima de la pil a

istore 1 #Almacena la cima de la pila en la variab le 1

iload 1 #Recupera el valor de la variable 1 a la cima de la pila
istore 2 #Almacena la cima de la pila en la variab le 2

El cédigo generado en este caso para la variabler'da asignacién "b=a" ha sido tan so6lo una
instruccion de tipo LOAD (en este caso de tipo etk OAD) seguida del nimero de orden de la
variable dentro el programa. La plantilla a defipita generacién de codigo por tanto sera tan
sencilla como en el caso de los literales. Veamagwiener lugar la plantilla que hemos definido:

ident(op,nv) 1= <<
<op> <nv>
>>

Vemos que en este caso le pasaremos dos argunadatptantilla, el primero de ellos indicando el
operador que utilizaremos para recuperar la vai@hlOAD, FLOAD, SLOAD o BLOAD), que
dependera del tipo del identificador, y el segugde contendra el nimero de orden de la variable
en el programa. La gramatica quedaria de la siggiferma:

expresion
m|IDENT {oper=traducirTipo($IDENT.expType)+"load" i}
-> ident(op={oper},nv={$IDENT.symbol.numv ar})

|literal -> {$literal.st}

Para generar el operador hemos utilizado un méfadpio llamado traducirTipo() que
devolvera el prefijo correcto del operador LOAD elegiendo del tipo del tipo del identificador
pasado como parametro, es decir, para un idemtificde tipo entero devolvera "i", para uno de
tipo real devolvera "f' y de forma analoga paraesto de tipos. Por otro lado, el nimero de la
variable lo obtendremos directamente del atribasi@bol.numvar del identificador, dato que
generamos durante la fase de analisis sintactico.

4. Generacién de cédigo para expresiones aritmétisa

Veamos en primer lugar un ejemplo de generaciGcodao para una expresion de este tipo:

/ICodigo en FKScript

int a; //Variable nimero 1
int b; //Variable nimero 2
a=3;

b =a + 5

#Caodigo traducido a FKIL

ipush 3 #Almacena el valor 3 en la cima de la pil a

istore 1 #Almacena la cima de la pila en la variab le 1

il oad 1 #Recupera el valor de la variable 1 a la cima de la pila

i push 5 #Almacena el valor 3 en la cima de la pila

i add #Realiza la suma de los dos valores superiore s de la pila
#y almacena el resultado en la cima de la pila.

istore 2 #Almacena la cima de la pila en la variab le 2

Como se observa en el ejemplo, para la expresiangséticas o que se hard serd generar en
primer lugar el cédigo de las subexpresiones, enaso un identificador (ILOAD 1) y un literal

Version 0.1 (Borrador) 34

Proyecto FKScript Salvador Gomez

(IPUSH 5) y posteriormente llamar al operador cpomdiente segun el tipo de expresion (en
nuestro caso IADD). El patrén para generar la plangarece por tanto claro:

op_aritmetico(op,el,e2) ::= <<
<el>

<e2>

<Op>

>>

La plantilla recibir4 tres argumentos: el operaddtmético a utilizar y el cédigo de las dos
subexpresiones de la expresion que estamos gepekamda gramatica se seguira un proceso muy
parecido al de los identificadores:

expresion
| *(opa=opAritmetico el=expresion e2=expresion)

{oper=traducirTipo($opa.opType)+$opa.st.ToStr ing();}
-> op_aritmetico(op={oper}, e1={$el.st}, e2={ $e2.st})

opAritmetico returns [string opType]

: op="+' -> {%{"add"}; $opType=$op.expTyp e;}
| op="-' -> {%{"sub"}; $opType=%op.expTyp e;}
| op="*" -> {%{"mul"}; $opType=$op.expTyp e;}
| op="1" -> {%{"div"}; $opType=%$op.expTyp e;}

El prefijo del operador lo obtendremos de la midorana que para el caso de los identificadores,
haciendo uso del métod@ducirTipo() , Y el operador en concreto lo generaremos engla re
opAritmetico , donde también devolveremos el tipo de la expne§ifie calculamos durante el
analisis semantico) para que sirva como parametmgido de traduccion de tipos.

5. Generacion de codigo para expresiones logicas

El proceso de generaciéon de cbdigo para una expré&gjica no sera tan directo como para el resto
de elementos que hemos comentado hasta el momergara tratar de explicar el por qué
empecemos como siempre por ver un ejemplo de trauae una expresion légica a codigo
FKIL:

Expresion légica: a > 3

#Traduccion a FKIL

ipush 1 #Valor por defecto de la expresion = 1 (true)

iload 1 #Se recupera el valor de la variable 1 a la cima de la pila
ipush 3 #Se coloca el valor 3 en la cima de la pila

ncmp #Se comparan los dos valores superiores de la pila

ifgt etigl #Si el resultado de la comparacion es > 0 se salta a "etiql"
pop #Se desapila el valor por defecto

ipush 0 #Se apila el valor contrario =0 (false)
etigl: #Etiqueta de salida

Como vemos, la estrategia a seguir para calculaeslitado de este tipo de expresiones sera
siempre suponiendo que la expresion es verdadsabzar la comparacion, y en caso de ser falsa
desapilar el resultado por defecto (true) y a@larontrario (false).

En este patrén sin embargo hay mucho elementosblesi que se deberan tener en cuenta a la hora
de definir la plantilla a utilizar para la genetatide expresiones logicas. El primero de ellod es e

Version 0.1 (Borrador) 35

Proyecto FKScript Salvador Gomez

tipo de comparacidnEn el ejemplo hemos utilizado el operadomp (comparacion numérica)
debido a que las dos subexpresiones (la varialiley "al literal "3") eran de tipo entero. Sin
embargo, en el caso de comparaciones de cadenedadahlizarse el operadecmp y para los
valores logicos el operadbemp. El segundo parametro a considerar sera el opeusitinado para
saltar a la etiqueta de salida. Asi, para el operad' se utilizarafgt , para "<" usariamaosgt vy

de forma analoga para el resto de operadores KgRor ultimo, un factor importante sera el
nombre de la etiqueta de salida, ya que debemgsraseos de que en el programa resultante no se
repita el nombre de ninguna etiqueta.

Teniendo todo esto en cuenta veamos cOmo quedar@amatica y la plantilla para estas
expresiones:

@members {
int nEtiqueta = 1;

private string operadorComparacion(String t)

t
string op ="
if(t. Equals("int") || t.Equals(‘float"))
op = "ncmp";
else if(t.Equals("string"))
op = "scmp";
else if(t.Equals("bool"))
op = "bcmp";

return op;

}
}

expresion

: N(opc=opComparacion el=expresion e2=expresion) {operc =
operadorComparacion($opc.opSecType);}
-> op_comparacion(opc={operc}, op={$opc.st}, e 1={$el.st}, e2={$e2.st},
etl={nEtiqueta++})

opComparacion returns [string opSecType]

:op="=="-> {%{"ifeq"}; $opSecType=$op.e xpSecType;}
| op="1=" -> {%{"ifne"}; $opSecType=$op.e xpSecType;}
| op=">="-> {%{"ifge"}; $opSecType=$op.e xpSecType;}
| op="<="-> {%{"ifle"}; $opSecType=$op.e xpSecType;}
| op=">" -> {%{"ifgt"}; SopSecType=$op.e xpSecTypes}

| op='<' -> {%{"iflt"}; $opSecType=%op.e xpSecType;}

El primero de los problemas a resolver, la elecciéhoperador de comparacién, lo solventamos
mediante el método propigperadorComparacion() (definido en la seccio@memberg al que le
pasaremos el tipo de las subexpresiones de las@pr®gica que estamos generando. Este tipo lo
almacenamos durante el analisis semantico enilelititexpSecType por lo que soélo tenemos que
recuperarlo en la reglComparacion . El operador IF a utilizar para el salto a la @tig de salida
también lo decidimos en dicha regla y se asignaegtdmente dependiendo del tipo de expresion
gue hayamos leido de nuestro programa. Por ulénaombre de la etiqueta se generara a partir de
un secuencial que iremos incrementando durante¢a@on de nuestro analizador acada vez que
haga falta generar una etiqueta. Eset secuencidettararemos una vez mas en la seccion
@membersy en nuestro caso se llamagiiqueta . La plantilla por su parte quedaria de la sig@ent
forma:

Version 0.1 (Borrador) 36

Proyecto FKScript Salvador Gomez

op_comparacion(opc,op,el,e2,etl) ;= <<
ipush 1

<el>

<e2>

<OpC>

<op> etig<etl>

pop

ipush 0

etig<etl>:

>>

6. Generacion de codigo para asignaciones

La generacion de codigo para las asignaciones gsimilar al ya visto para los identificadores ya

gue la dnica dificultad a salvar sera el operadb®RE a utilizar para almacenar el valor de la
variable, y éste se calculara a partir del tipolaleexpresion derecha mediante el método ya
comentadaraducirTipo()

inst_asig
@init {
string oper = "";
} : "(ASIGNACION IDENT expresion) {oper =
traducirTipo($ASIGNACION.expType)+"store";}
-> asignacion(op={oper}, nv={$IDENT.symbol.numv ar}, val={$expresion.st});

El nimero de orden de la variable se recuperardatidduto symbol.numvar que calculamos
durante el andlisis sintactico. La plantilla, meydlla en este caso, quedaria asi:

asignacion(op, nv, val) ::= <<
<val>

<op> <nv>

>>

7. Generacion de codigo para instrucciones condiciales y bucles

Vemos ahora la generacion de codigo para las owtnoesit y while de FKScript. Ninguna de
ellas afiade ninguna dificultad a las ya comentgaasio que las trataremos muy brevemente.
Veamos en primer lugar un ejemplo de traducciéoadia una de ellas:

/lInstruccion IF
if(...expresion-logica...)

/llinstrucciones-si

}

else

{

/llinstrucciones-else

}

#Traduccion a FKIL
...expresion-logica...
ifeq etiql
...instrucciones-si...
goto etig2

etiql:
...Instrucciones-else...
etiq2:

/lnstruccién WHILE

Version 0.1 (Borrador) 37

Proyecto FKScript Salvador Gomez

while(...expresion-logica...)

{
}

#Traduccion a FKIL
etiql
...expresion-logica...
ifeq etiq2
...instrucciones-while...
goto etigl

etiq2:

/linstrucciones-while

A partir de estos patrones, las plantillas de §lramplate a definir son practicamente directas:

instif(cond,instsi,instelse,etl,et2) ::= <<
<cond>

ifeq etig<etl>

<instsi>

goto etig<et2>

etig<etl>:

<instelse>

etig<et2>:

>>

instwhile(cond,instrucciones,etl,et?) ::= <<
etig<etl>

<cond>

ifeq etig<et2>

<instrucciones>

goto etig<etl>

etig<et2>:

>>

La gramatica por su parte tampoco afiade ningunicydaridad extra a las ya comentadas en
apartados anteriores por lo que no nos pararenmagi@do en comentarla:

inst_if : A('if* expresion isi=lista_instrucciones ielse=lista_instrucciones)
-> instif(cond={$expresion.st},instsi={$isi .st},instelse={$ielse.st},
etl={nEtiqueta++}et2={nEtiqueta+ +});
inst_while : ~(‘while' expresion li=lista_instrucci ones)
-> instwhile(cond={$expresion.st},instru cciones={$li.st},
etl={nEtiqueta++}et2={nEti gquetat++});

8. Generacion de codigo para el programa principaFKIL

Una vez comentada la generacion de codigo parawsnlde los elementos principales de nuestro
lenguaje ya solo nos queda ver cOmo generar laotsta principal del programa. Esto lo haremos
en la reglarincipal de la gramatica.

principal[int locales] : ~('program’ tipo IDENT li= lista_instrucciones)
-> principal(nom={$IDENT.tex t}, loc={locales},
instr={$li.st});

Como vemos, esta regla recibira un parametro extéamadolocales que contendra el nimero
de variables locales utilizadas por el programde Eato lo usaremos para generar la directiva
Jlocals de FKIL. El parametro lo deberemos pasar convésmeante desde el programa principal
a la hora de llamar al analizador que acabamosree.dPor o demas, el Unico dato adicional

Version 0.1 (Borrador) 38

Proyecto FKScript Salvador Gomez

necesario sera el nombre del programa que lo ofeteras directamente del texto del identificador
correspondiente en la regla. La plantilla nos quiad#e la siguiente forma:

principal(nom, loc,instr) ::= <<
.program <nom>

Jocals <loc>

<instr>

>>

9. Programa principal

En este punto ya hemos finalizado nuestra gramatinaestro fichero de plantillas por lo que
estamos en condiciones de completar nuestro pregpaimcipal para llamar al generador de codigo
al final del proceso.

/[Analisis léxico semantico

FKVMLexer lexer = new FKVMLexer(input);

CommonTokenStream tokens = new CommonTokenStream(le Xer);
FKVMParser parser = new FKVMParser(tokens);

parser.TreeAdaptor = adaptor;

FKVMParser.programa_return result = parser.programa 0;

/ISi no hay errores |éxicos ni sintacticos ==> Anal isis Semantico
if (lexer.numErrors + parser.numEgrrors == 0)

{

//Analisis Semantico

CommonTree t = ((CommonTree)result. Tree);

CommonTreeNodeStream nodes2 = new CommonTreeNod eStream(t);
nodes2.TokenStream = tokens;

FKVMSem walker2 = new FKVMSem(nodes?2);
walker2.programa(parser.symtable);

/[Si no hay errores en el analisis semantico == > Generacién de cédigo
if (walker2.numErrors == 0)
{

/[Plantillas

TextReader groupFileR = new StreamReader(" FkvmlIL.stg");

StringTenpl at eG oup tenplates = new StringTenpl at eG oup(gr oupFi | eR) ;
groupFileR.Close();

/IGeneracion de Codigo
CommonTreeNodeStream nodes = new CommonTre eNodeStream(t);
nodes.TokenStream = tokens;
FKVMGen walker = new FKVMGen(nodes);
wal ker . Tenpl ateLi b = tenpl at es;
FKVMGen.programa_return r2 = walker.progra ma(par ser . numvar s);

}
}

En primer lugar leeremos el fichero de plantiliagmiL.stg para generar el objetemplates

Este objeto se pasard como entrada a nuestro ao@lia traves del atributtemplateLib para
indicar las plantillas a utilizar durante la geméda de codigo. Por ultimo, no deberemos olvidar
pasar como parametro de entrada el numero de lewidbcales del programa, dato que
obtendremos directamente del analizador sintaamode como ya comentamos definimos un
atributo llamadamumvars que contenia precisamente ese dato.

Version 0.1 (Borrador) 39

Proyecto FKScript

Salvador Gémez

Ensamblador de cédigo FKIL (FKASM)

En este capitulo describiremos la fase posterior al proceso
de compilacion, el mdédulo ensamblador. Como siempre,
comenzaremos enumerando las tareas a realizar por este
proceso y posteriormente detallaremos la implementacién
del modulo en C#.

Version 0.1 (Borrador)

40

Proyecto FKScript Salvador Gomez

Una vez hemos construido el compilador para el uajgg FKScript, que se encargara de
transformar el lenguaje de script de alto nivelcédigo intermedio FKIL, necesitamos un nuevo
modulo para transformar éste ultimo en el codigato final que sera interpretado por la maquina
virtual. En esta seccion nos pararemos a detallanplementacion en C# del modulo ensamblador
para FKIL.

1. Tareas del ensamblador
Las tareas a realizar por el ensamblador seraigagntes:

1. Comprobar la validez del cédigo FKIL, es decir, poobar que la estructura del programa
es correcta, comprobar la validez de las directesaigstrucciones utilizadas y validar sus
parametros.

2. Comprobar y traducir las etiquetas utilizadas gregrama.

3. Construir la tabla de literales y resolver susregfeias.

4. Generar el fichero binario ejecutable del programa.

Para llevar a cabo todas estas tareas se realdasgrasadas al fichero de entrada. En la prineera d
ellas (métodogeneracionP1()) se verificara el codigo FKIL y se generaran labldas de
traduccion de etiquetas y literales. En la segyatada (métodgeneracionP2()) se generara el
cbdigo binario del programa resolviendo convenimetee todas las referencias a etiquetas y
literales a partir de las tablas de traduccionoyestruidas.

public void ensamblar(string pathEntrada, string pa thSalida)

{

ensambladoOK = true;

/[Primera pasada
generacionP1(pathEntrada);

//Segunda pasada (si la primera no ha producido errores)
if(ensambladoOK)
generacionP2(pathEntrada, pathSalida);
}

2. Estructuras de datos

Para la realizacion de todas las tareas comentldassamblador necesitara disponer de varias
estructuras de datos para almacenar toda la infddmaecesaria durante el ensamblado:

« Ficheros de entrada (FKIL) y salida (Binario).
- Contador de programa.

- Tabla de instrucciones.

- Tabla de literales.

- Tabla de cadenas.

« Cabecera del fichero de salida.

/[Tabla de Instrucciones
private Dictionary<string,Instruccion> instSet = nu Il;

/[Fichero de entrada
private StreamReader fe = null;

Version 0.1 (Borrador) 41

Proyecto FKScript

Salvador Gémez

/IFichero de salida
private BinaryWriter fsal = null;

/[Tabla de literales
private List<string> cadenas = new List<string>();

/[Tabla de etiquetas
private Dictionary<string, int> etiquetas = new Dic

/ICabecera
private Cabecera cab = new Cabecera();

/[Contador de programa
private int progCounter = 0;

3. Inicializacion del ensamblador

tionary<string, int>();

Como primer paso del ensamblado vamos a inicial@atabla de intrucciones. Esta tabla se
utilizara tanto para la validacion de las intruogs (operadores y parametros) del programa como

para la posterior generacién del fichero de salida.

Esta tabla consistira en una colecciéon de objatesngs indiquen, para cada instruccién valida, su
nombre, su nimero de parametros y su codigo bindem ello, definiremos en primer lugar una
clase para almacenar esta informacion que llamaremaiccion

class Instruccion

{
public string nombre; //Nombre de la instrucc
public int opcode; //Cédigo de la instrucc
public int numpar; //Nimero de parametros

public Instruccion(string nombre, int opcode, i
{
this.nombre = nombre;
this.opcode = opcode;
this.numpar = numpatr;
}
}

i6n
i6n

nt numpar)

Una vez contamos con esta clase, la inicializad®ka tabla de instrucciones se limitara a afadir a
la coleccion uno de estos objetos por cada instma@lida de nuestro lenguaje intermedio FKIL:

private void inicializarlnstSet()

{

instSet = new Dictionary<string, Instruccion>()

instSet.Add("ipush", new Instruccion("ipush”, 1
instSet.Add("fpush”, new Instruccion("fpush", 2

instSet.Add("spush", new Instruccion("spush”, 3
instSet.Add("bpush”, new Instruccion("bpush”, 4

instSet.Add("iload", new Instruccion("iload", 5
instSet.Add("fload", new Instruccion("fload", 6
instSet.Add("sload", new Instruccion("sload", 7
/...

» 1)
» 1))
» 1))
» 1))
» 1))
» 1)
» 1))

Version 0.1 (Borrador)

42

Proyecto FKScript

Salvador Gomez

4. Primera pasada del ensamblador

Como ya comentamos anteriormente, durante la pairpasada del ensamblador se realizara la
validacion de las instrucciones del programa \elaegacion de las tablas de literales y etiquetas qu
se utilizaran posteriormente para generar el ffieal ejecutable.

En primer lugar deberemos identificar aquellasdéngel programa que no debemos procesar, como
son los comentarios y las lineas en blanco. Posteente, para el resto de lineas decidiremos si se
trata de unairectiva unaetiquetao unainstrucciony actuaremos en consecuencia llamando a

meétodos independientes.

private void generacionP1(string pathEntrada)

{

string linea;

/ISe abre el fichero de entrada
fe = File.OpenText(pathEntrada);

linea = fe.ReadLine();

//Se procesan todas las lineas que no sean come
while (linea != null)

if (linea !'= null)
linea = linea.Trim();

if (!linea.StartsWith("#") && !linea.Eq
{

procesarLineaP1(linea);

}
}

linea = fe.ReadLine();

}

fe.Close();
}

private void procesarLineaP1(string linea)

{
if (linea.Trim().EndsWith(":")) /[Etiqu

procesarEtiquetaP1(linea);
}
else if (linea.Trim().StartsWith(".")) //Direc
{

procesarDirectivaP1(linea);

}
else /lInstr
{

procesarinstruccionP1(linea);
}

}

4.1. Procesamiento de directivas

ntarios ni lineas en blanco

uals("™))

eta

tiva

uccion

Las directivas soportadas por FKIL no dardn consolltado ninguna instruccion ejecutable en el
programa final, y tan solo se utilizaran para catgplla informacion incluida en la cabecera del

Versiéon 0.1 (Borrador)

43

Proyecto FKScript Salvador Gomez

fichero ejecutable, que contendra datos generale® €| formato del fichero, el programa, y el
entorno de ejecucion que creara la maquina vigaed albergarlo.

Para almacenar y tratar esta informacion constngseuna nueva clase llamatkbecera :

public class Cabecera

{
public int magic = 8080; //ldentifica cion del formato de fichero
public int version =1; [//Version de | formato de fichero
public int revision =0; [//Revisi6ond el formato de fichero
public string programName =""; //Nombre del programa
public int stackSize = 1024; //[Tamafo de la pila
public int heapSize =1024; /[Tamafio de la memoria dinamica
public int nConst =0; //Num. eleme ntos en la tabla de literales
public int nLocals =0; //Num. varia bles locales utilizadas

public Cabecera(){}
}

Como vimos en la seccidn sobre la especificacidhetguaje FKIL, son cuatro las directivas que
podemos incluir en un programa escrito en esteukgegprogram , .stack , .heap VY .locals

gue se corresponden directamente con cuatro dkatos almacenados en la cabecera por lo que su
procesamiento por parte del ensamblador serd dirélds limitaremos a leer cada una de las
directivas y trasladar su informacion asociadacalezecera:

private void procesarDirectivaP1(string linea)

{
//Se separa la directiva de su parametro asocia do
string[] tokens = linea.Split(new char[] {"" b;
//Se rellena su atributo correspondiente de la cabecera

if (tokens[0].StartsWith(".program"))
cab.programName = tokens[1];

}else if (tokens[0].StartsWith(".stack™))
cab.stackSize = Convert.Tolnt32(tokens[1]);

}else if (tokens[0].StartsWith(".heap"))
cab.heapSize = Convert.Tolnt32(tokens[1]);

else if (tokens[0].StartsWith(".locals"))

cab.nLocals = Convert.Tolnt32(tokens[1]);

}
}

4.2. Procesamiento de etiquetas

El procesamiento de las etiquetas utilizadas eprarama sera aun mas sencillo que el de las
directivas, ya que tan sélo deberemos almacenagtilgisetas encontradas en la tabla de etiquetas
junto a la posicion que ocupan dentro del progrdesta posicion se obtiene a partir de la variable
progCounter , que se ira actualizando, como veremos despuésdala que se procesan y validan
instrucciones ejecutables.

private void procesarEtiquetaP1(string linea)

{

Version 0.1 (Borrador) 44

Proyecto FKScript Salvador Gomez

etiquetas.Add(linea.Substring(0, linea.Length - 1), progCounter);
}

4.3. Procesamiento de instrucciones
Durante el procesamiento de cada instruccion detmeyeealizar las siguientes tareas:

1. Validacion de la instruccion: el operador tendré cer uno de los soportados por el
lenguaje.

2. Validacion de los parametros de la instrucciomighero de parametros de la instruccion
debera coincidir con la informacién contenida etalda de instrucciones.

3. Actualizaciéon del contador de programa: se actaaizconvenientemente la variable
progCounter segun la instruccion procesada y su nUmero denedrds.

4. Actualizacion de la tabla de literales: se afadirditeral correspondiente a la tabla de
literales cada vez que se procese una instrucciéragepte este tipo de parametros (SPUSH
y CALLAPI).

private void procesarlnstruccionP1(string linea)
{
//Separamos la instruccion de sus parametros
string[] tokens = linea.Split(new char[] {"" b;

//Buscamos la instruccién en la tabla de instru cciones
Instruccion inst = instSet[tokens[0]];

/ISi la instruccién existe
if (inst != null)

/ISi el nimero de parametros de la instrucc ion es correcto
if ((tokens.Length - 1) == inst.numpar)

//Se actualiza el contador de programa
progCounter += inst.numpar + 1;

/ISi es una instruccion SPUSH o CALLAPI almacenamos
/lel literal en la tabla de cadenas

if (tokens[0].Equals("spush"))

{

cadenas.Add(tokens[1].Substring(1, tokens[1].Length - 2));
}
else if (tokens[0].Equals(“callapi))
{

cadenas.Add(tokens[1]);

}
}

else

Console.WriteLine("NUmero de parametros incorrecto:");
Console.WriteLine(linea);
ensambladoOK = false;
}
}
else
Console.WriteLine("Instruccién inexistente: ");

Console.WriteLine(linea);
ensambladoOK = false;

}
}

Versiéon 0.1 (Borrador) 45

Proyecto FKScript Salvador Gomez

5. Segunda pasada del ensamblador

En la primera pasada del mdédulo ensamblador noshemneocupado de validar el programa FKIL
y de recopilar toda la informacion necesaria paraerdadera generacion del programa ejecutable
final. En esta segunda pasada nos preocuparemseéltade las instrucciones ya que como dijimos
son los Unicos elementos que generaran el codegoteple del programa, el resto de elementos tan
solo servirdn de apoyo para generar correctamefitdhero de salida.

En primer lugar abriremos el fichero de salida griegemos toda la informacion de la cabecera
gue hemos generado durante la primera pasadaldcbremos mediante la llamada al método

escribirCabecera() cuya implementacion es directa:
private void escribirCabecera()
{

//[Cabecera

fsal.Write(cab.magic);
fsal.Write(cab.version);
fsal.Write(cab.revision);
fsal.Write(cab.programName);
fsal.Write(cab.stackSize);
fsal.Write(cab.heapSize);
fsal.Write(cab.nLocals);
fsal.Write(cadenas.Count);

/[Tabla de literales

foreach (string c in cadenas)
fsal.Write(c);
}

Tras escribir la cabecera, recorreremos de nuefiohelro de entrada pero esta vez procesando tan
solo las lineas que contienen instrucciones ejbtega

private void generacionP2(string pathEntrada, strin g pathSalida)
{

string linea;

/IAbrimos el fichero de entrada
fe = File.OpenText(pathEntrada);

/IAbrimos el fichero de salida
fsal = new BinaryWriter(new FileStream(pathSali da, FileMode.Create));

/IGeneracion de la Cabecera
escribirCabecera();

//Generacién del Cadigo
linea = fe.ReadLine();

while (linea != null)
if (linea !'= null)

//Si no es un comentario o una linea en blanco se procesa
if (Nlinea.Trim().StartsWith("#") && !l inea.Trim().Equals("))

procesarLineaP2(linea);

}
}

linea = fe.ReadLine();

Versiéon 0.1 (Borrador) 46

Proyecto FKScript Salvador Gomez

}

fe.Close();
fsal.Flush();
fsal.Close();
}
private void procesarLineaP2(string linea)
{
//[Procesamos tan solo la lineas que contengan i nstrucciones
if(!linea.Trim().StartsWith(".") && !linea.Trim ().EndsWith(":"))
procesarinstruccionP2(linea);
}
}

Por ultimo, el procesamiento de cada instruccidé sea tarea sencilla, debiéndonos preocupar tan
so6lo de escribir al fichero de salida el codigdadastruccion leida junto a sus parametros en caso
de existir. Para ello, nos basaremos una vez misieformacion de la tabla de instrucciones.

private void procesarlnstruccionP2(string linea)

{
/[Separamos la instruccién de sus posibles para metros
string[] tokens = linea.Split(new char[] {"" b;
/[Buscamos la instruccién en la tabla de instru cciones
Instruccion inst = instSet[tokens[0]];
/[Escribimos el codigo de la instruccion al fic hero de salida

fsal.Write((float)inst.opcode);

/ISi la instruccidn tiene Un parametro simple

if (inst.nombre.Equals(“ipush”) ||
inst.nombre.Equals(“iload") ||
inst.nombre.Equals(“istore") ||
inst.nombre.Equals("bpush”) ||
inst.nombre.Equals("bload") ||
inst.nombre.Equals("bstore") ||
inst.nombre.Equals("sload") ||
inst.nombre.Equals("sstore"”) ||
inst.nombre.Equals(“fpush”) ||
inst.nombre.Equals(“fload™) ||
inst.nombre.Equals(“fstore"))

fsal.Write(Convert.ToSingle(tokens[1]));

//Si la instruccidn tiene asociada una etiqueta

else if (inst.nombre.Equals("goto") ||
inst.nombre.Equals(“ifeq") ||
inst.nombre.Equals("ifne") ||
inst.nombre.Equals("ifgt") ||
inst.nombre.Equals(“ifge") ||
inst.nombre.Equals("ifit") ||
inst.nombre.Equals(“ifle"))

fsal.Write((float)etiquetas[tokens[1]]);

/ISi la instruccién tiene asociada un literal ¢ adena
else if (inst.nombre.Equals("spush"))

fsal.Write((float)cadenas.IndexOf(
tokens[1].Substring(1, tokens[1].Length - 2)));

Versiéon 0.1 (Borrador) 47

Proyecto FKScript Salvador Gomez

}

/ISi la instruccién tiene asociada un nombre de funcién
else if(inst.nombre.Equals(“callapi"))

fsal.Write((float)cadenas.IndexOf(tokens|[1]));

}
}

Como podemos ver en el cédigo anterior, el proa@sadmenzara escribiendo el codigo de la

instruccion al fichero de salida. Posteriormenteidiea si debe escribir algin dato mas asociado a
dicha instruccién, como puede ser un parametro riamjéuna referencia a etiqueta o una

referencia a un literal.

En el primer caso, parametro numeérico, se escrddiparametro directamente al fichero de salida.
En caso de referencias a etiquetas se traduan@nabre de la etiqueta por su posicion en el cédigo,
informacion que teniamos ya almacenada en la tebiiquetas. Por ultimo, para instrucciones que
hacen referencia a cadenas de caracteres (SPUSMlares de funcion (CALLAPI) resolveremos
dicha referencia consultando la tabla de literglés hemos construido durante la primera pasada
del ensamblador.

Version 0.1 (Borrador) 48

Proyecto FKScript

Salvador Gémez

Maquina Virtual de FKScript (FKVM)

En este dltimo capitulo nos centraremos en el médulo
encargado de la ejecucién de un programa escrito en
FKScript, la maquina virtual. Veremos su implementacion
en C# y la forma en que podremos integrarla con otras
aplicaciones para trabajar de forma conjunta.

Version 0.1 (Borrador)

49

Proyecto FKScript Salvador Gomez

El ultimo mdédulo necesario en nuestro sistemalsam@aquina virtual, que seréa la encargada de
interpretar el fichero generado por el ensamblgdgecutar las instrucciones contenidas en él.

En los préximos apartados veremos la estructusstdemaquina virtual, los procesos de carga de y
ejecucion del programa y el mecanismo definido pgemgrar la maquina virtual con otras
aplicaciones y permitir la interaccion entre ambas.

1. Estructura de la maquina virtual

La estructura de la maquina virtual FKVM se repnésen la siguiente figura:

PC
MAQUINA
VIRTUAL PILA
SEGMENTO FKVI
DE
CODIGO
MEMORIA
DINAMICA

REGISTRO FUNCIONES
APl

A continuacion se realiza una breve descripcidoadia uno de estos elementos.
1.1. Segmento de cédigo

En esta estructura se almacenara todo el codigarogiama a ejecutar, sin incluir los datos de la
cabecera del programa ni los literales inicialeg@aidos en el fichero del programa.

1.2. Registro contador de programa

Este registro contendra en todo momento la posiciéntro del segmeto de cédigo, de la préxima
instruccion a ejecutar por la maquina virtual, cerdefecto, el proximo parametro a leer durante la
ejecucion de una instruccién determinada.

1.3. Pila

La pila constituye el elemento més importante dedguina virtual y aque en ella se almacenaran
las variables locales del programa y albergarastiéooresultados intermedios producidos por el
programa en ejecucion. Sobre esta estructura laimggirtual realizara todas las operaciones del
programa almacenando en ella todos los valoresagos para su ejecucion. Los valores
numeéricos y booleanos se almacenaran directameiéepda, y para los valores de tipo cadena se
almacenara una referencia a la memoria dinamica.

Version 0.1 (Borrador) 50

Proyecto FKScript Salvador Gomez

1.4. Memoria dinamica

En esta estructura de la maquina virtual se alnsméartodos los valores que no sean numéricos o
booleanos. En nuestro caso, tan solo contendréaloges de tipo cadena de caracteres, ya sean
literales utilizados en operaciones del programarabres de funciones externas.

1.5. Tabla de funciones API

En esta tabla se registraran todas las funciortesn@s disponibles para ser llamadas durante la
ejecucion de un programa FKScript. Contendra kciéh entre el nombre de éstas y una referencia
a la funcién en si.

Todas estas estructuras, a excepcion de las neda@e con las funciones APl que se comentaran
mas adelante, estaran representadas en nuestesrienhcion mediante las siguientes colecciones
de C#:

/IPila
private Pila pila = null;

//IMemoria dinamica
private List<string> heap = null;

/[Segmento de cédigo
private List<float> codigo = null;

/[Contador de programa (PC)
private int pc = 0;

2. Carga de un programa

Durante el proceso de carga de un programa endainavirtual se deberan realizar las siguientes
operaciones:

Apertura y lectura del fichero de entrada.

Lectura y registro de la cabecera del fichero.

Inicializacion del segmento de cédigo, pila y meiadinamica.

Lectura y almacenamiento en la memoria dinamidasléterales iniciales del programa.
Lectura y almacenamiento en el segmento de cédigodb el codigo del programa.

agrwnE

La cabecera del fichero se almacenara en un ofigetipoCabecera como el que ya utilizamos
durante el ensamblado del programa.

/[Apertura del fichero de entrada
BinaryReader fent = new BinaryReader(
new FileStream(path,
FileMode.Open, File Access.Read));

/ILectura de la cabecera

cab.magic = fent.ReadInt32();
cab.version = fent.ReadInt32();
cab.revision = fent.ReadInt32();
cab.programName = fent.ReadString();
cab.stackSize = fent.ReadInt32();
cab.heapSize = fent.ReadInt32();
cab.nLocals = fent.ReadInt32();
cab.nConst = fent.ReadInt32();

Version 0.1 (Borrador) 51

Proyecto FKScript Salvador Gomez

La inicializacion de estructuras es también semgilse utilizara parte de la informacion leidaale |
cabecera. Asi, la pila se inicializara con un tamaitial igual al nimero de variables locales del
programagab.nLocals , Y la memoria dindmica se inicializara al tamaféximo permitido
cab.heapSize

/Mnicializacion de estructuras

pc = 0; /[Contador de programa
codigo = new List<float>(); /[Segmento de cédigo
pila = new Pila(cab.nLocals); /IPila

heap = new List<string>(cab.heapSize); //Memoria dinamica

Por ultimo, insertaremos en la memoria dinamicdilesales iniciales del programa contenidos en
la tabla de literales del fichero de entrada y @angos el segmento de cédigo con todo el cédigo
del programa.

/ILiterales iniciales
for (inti = 0; i < cab.nConst; i++)

heap.Add(fent.ReadString());

/ICodigo del programa
while (fent.PeekChar() |=-1)

codigo.Add(fent.ReadSingle());
}

fent.Close();
3. Ejecucién del programa

El bucle principal de ejecucion del programa, uea inicializadas y cargadas todas las estructuras
de la maquina virtual, sera muy sencillo. Nos laretnos a ejecutar todas las instrucciones del
programa mientras el contador de programa no Hagazado el final del fichero.

Se ha afiadido una nueva inicializacion previa eedquina virtual para permitir varias ejecuciones
de un mismo programa sin tener que cargarlo demuev

public void ejecutar()

{

/lInicializacion de registros y estructuras
inicializarEstado();

/[Bucle principal
while (pc < codigo.Count)

{

}
}

ejecutarlnstruccion();

4. Ejecucion de instrucciones

El proceso de ejecucion de una instruccion depéarmlariamente de cada instruccion leida del
fichero de entrada. Definiremos un método para cadade las instrucciones soportadas por FKIL
e insertaremos un paso inicial donde se decidangiédo ejecutar segun la instruccion leida.

private void ejecutarlnstruccion()

{

Version 0.1 (Borrador) 52

Proyecto FKScript Salvador Gomez

int opcode = (int)codigo[pc++];
switch (opcode)

case IPUSH:

case FPUSH:

case SPUSH:

case BPUSH:
ejecutarPUSH();
break;

case POP:
ejecutarPOP();
break;

case |IADD:

case FADD:
ejecutarADD();
break;

case ISUB:

case FSUB:
ejecutarSUB();
break;

}

Como puede observarse en el codigo anterior, atgiedas instrucciones de FKIL podran
agruparse en un solo método de ejecucion ya qafesto sobre la maquina virtual sera
exactamente el mismo. Asi, por ejemplo, todas pasaziones de tippUSHse ejecutaran
mediante el método UniefecutarPUSH()

A continuacion veremos la implementaciéon de losoahdés de ejecucion de algunas instrucciones
de FKIL. En el cédigo fuente proporcionado pordransultarse el resto de instrucciones.

4.1. Instrucciones PUSH

Para instrucciones de tipo PUSH leeremos el dajolar desde el segmento de cddigo (posicion
actual del contador de programa) y lo afiadiremascana de la pila.

private void ejecutarPUSH()
{

float opl = codigo[pc++];
pila.Add(op1l);

4.2. Instrucciones LOAD

Para instrucciones de tipo LOAD leeremos el nurderta variable a recuperar desde el segmento
de cédigo (posicion actual del contador de progjanta afiadiremos a la cima de la pila.
Recordemos que las variables locales también sgepttan almacenadas en la pila.

private void ejecutarLOAD()
int opl = (int)codigo[pc++];

pila.Add(pila[op1]);
}

4.3. Instrucciones STORE

Version 0.1 (Borrador) 53

Proyecto FKScript Salvador Gomez

Para instrucciones de tipo STORE leeremos el nudeeta variable a actualizar desde el segmento
de cddigo (posicion actual del contador de progjaatualizaremos la variable y desapilaremos el
valor almacenado.

private void ejecutarSTORE()

{
int op1 = (int)codigo[pc++];

pila[opl] = pila.pop();

4 4. Instrucciones aritméticas

Las instrucciones aritmética sobre valores entemesles se realizaran también de forma conjunta
mediante un s6lo método. Este leera y desapilardds valores sobre los que actuara la
instruccion, ejecutara la operacion y volvera dan la cima de la pila el resultado obtenido.
Como ejemplo, veamos como quedaria la ejecuciamdenstruccion de tipo ADD:

private void ejecutarADD()

{
float op1, op2;

opl = pila.pop();
op2 = pila.pop();
pila.Add(opl + op2);

}

4.5. Instrucciones de comparacion

Las comparaciones numericas o de booleanos seraindig sencillas que las ya vistas hasta el
momento. Se leeran y desapilaran los valores a a@angde la pila, se realizara la comparacion y se
generard el resultado segun el convenio establéeid@alores de retorno. En nuestro caso
indicamos este convenio en los cometarios al griadel método de ejecucién. Asi, por ejemplo,
la comparacion numérica quedaria de la siguiemitedo

private void ejecutarNCMP()

{
/ISi OP1 > OP2 --> -1

/ISi OP1 =0P2 --> 0
/ISi OP1 < OP2 --> +1

float opl, op2, res = OF;

opl = pila.pop();
op2 = pila.pop();

if (opl > op2)
res = -1.0F;
else if (opl < op2)
res = +1.0F;

pila.Add(res);
}

4.6. Instrucciones de salto condicional

Veamos ahora algun ejemplo de instruccién de daltiipo IF. Estas instrucciones leeran y
desapilaran el valor a comparar desde la pilaizagah la comparacion correspondiente segun el
tipo concreto de instruccion y actualizaran el adot de programa con el valor correspondiente

Version 0.1 (Borrador) 54

Proyecto FKScript Salvador Gomez

segun se haya cumplido la comparacién o no. A, mparacion es verdadera se actualizara el
contador de programa con el valor almacenado eimia de la pila (segundo parametro de la
instruccion de salto), y en caso contrario se mergara el contador en una unidad como ocurria
con el resto de instrucciones. Veamos como ejetapitstruccion IFEQ:

private void ejecutarlFEQ()

{
float op1;

opl = pila.pop();

if (opl == OF)

pc = (int)codigol[pc];
else

pc++;

}

4.7. Instruccion de llamada a funcion externa

Por ultimo veamos como implementar la ejecuciolaheadas a funciones externas. En primer
lugar recuperaremos el nombre de la funcion arpdetiparametro almacenado en la cima de la pila
y los literales almacenados en la memoria dinaohécka maquina virtual. Con este valor,
accederemos a la tabla de funciones APl y en cas@tdrse de una llamada valida llamaremos a la
funcién a través de su delegado.

private void ejecutarCALLAPI()

{
string fun = heap|(int)codigo[pc++]];

if (registroApi.ContainsKey(fun))
registroApi[fun]();
}

5. Integracion con otras aplicaciones

Uno de los requisitos que nos pusimos al comierzeste desarrollo fue que nuestra maquina
virtual pudiera integrarse con otras aplicacios&snpre que éstas expusieran una API con el
formato correcto, de forma que pudieran comunicansee si. Dicho de otra forma, queremos que
nuestra maquina virtual pueda acoplarse facilmemteo mddulo a cualquier otra aplicacion y que
podamos utilizar parte de la funcionalidad de digplécacion desde nuestro lenguaje de script.

Si consultamos la especificacion de FKScript, paskerrer que la forma de llamar a funciones de la
API de una aplicacion externa seré declarar difragones al comienzo del programa mediante la
palabra clavepi e insertar llamadas en el programa (utilizandsritaxis tradicional de C# o Java)
como si de cualquier otra expresion se trataransaun ejemplo:

api float calcularRadio();
api void dibujarCirculo(int x, int y, float radio);

program void Prueba
float r;
r =10 + calcularRadio();

dibujarCirculo(50, 100, r);
}

Version 0.1 (Borrador) 55

Proyecto FKScript Salvador Gomez

En el programa anterior se utilizan dos funcioretadAPI de una aplicacion externa. Ambas
funciones estan convenientemente declaradas akoamdel script, indicando su nombre,
parametros y tipo de salida. En el cuerpo del progrse utiliza la primera de ellas, sin parametros,
en el interior de una expresion y la segunda cdamodda aislada sin devolver ningun resultado,
ambas formas serén validas en FKScript.

Cuando compilamos este programa a codigo intermebiesultado que obtendremos sera el
siguiente:

.program Prueba

Jocals 1

ipush 10

callapi calcularRadio //Llamada a la funcién de | a AP|

iadd

istore 0

ipush 50 /[Primer parametro de la |l amada = 50

ipush 100 //Segundo parametro de la | lamada = 100

fload 0 //Tercer pardmetro de la llamada = Var iable 'r' (n° variable = 0)
callapi dibujarCirculo //Llamada a la funcion de | a AP|

Vemos que las llamadas a funciones de la API ssftseman en llamadas a la instrucciamapi
de FKIL. Ademas, como se observa, los parametresegiba dicha llamada seran apilados
previamente a la ejecucion de dicha instruccion.

Una vez visto cdmo funcionan a alto nivel las lldama la APl debemos plantearnos varias
cuestiones. En primer lugar habra que implemergananecanismo para que la aplicacion que
hospedara a la maquina virtual comunique a ésfamasones de su API que estaran disponibles, y
en segundo lugar habra que definir la forma endgleran estar definidas estas funciones y la
forma de comunicacion entre ambas aplicaciones.

5.1. Registro de funciones API

Tanto para poder validar las llamadas realizadas@ones externas (algo que se hara por tanto en
tiempo de ejecucion y no durante la compilaciompagara disponer de las referencias necesarias
a dichas funciones la maquina virtual debera caarunindicedonde se almacene de alguna
forma la coleccion de funciones externas disposible

En nuestro caso esto lo conseguiremos utilizandacakeccién delelegadosUn delegadgpodria
definirse de forma sencilla como una referenciaafuncion (sé que alguien me caneara por
explicarlo de esta manera :) con un prototipo cetecres decir, un determinado tipo de salida y
unos parametros definidos.

Dado que no sabemos a priori el prototipo de ttaaposibles funciones que pueden formar parte
de una API determinada, nosotros vamos a optaslgimar a que todas las funciones de la APl de
una aplicacion que quiera hacer uso de FKScripbdemguaje integrado tengan la siguiente
forma:

void NombreFuncionAPI()

Es decir, que ninguna funcidn externa podra redibactamente parametros ni devolver ninguin
resultado. Aungue esto pueda parecer un gran iecoente no es tal, ya que en la practica estas
restricciones no seran reales sino solo una cmedéidorma. En el apartado siguiente veremos
coémo solventar esto para que nuestras funcionetapuecibir parametros y devolver resultados.

Version 0.1 (Borrador) 56

Proyecto FKScript Salvador Gomez

Una vez decidida la forma que tendran las funciexésrnas ya podemos definir nuestro delegado
y la coleccion que hara las funciones de indice:

public delegate void ApiCall();
private Dictionary<string, ApiCall> registroApi = n ull;

La coleccidnregistroApi contendra una relacion entre los nombres de fasduoes disponibles
(primer parametrcstring) y una referencia a la funcién propiamente diceg(ndo parametro:
ApiCall) de forma que ésta pueda ser llamada directardestie la coleccion.

El mantenimiento de este inidce debera realizarlplicacién host, es decir, que sera la aplicacion
contenedora la que afiada o elimine las funcionessgtaran disponibles para su uso desde
FKScript. Por lo tanto, tendremos que proporci@ésta una forma de realizar estas operaciones.
Definiremos para ello dos métodos con los que praatgstrar y eliminar funciones del indice de
forma sencilla:

public void registrarFuncionApi(string nombre, ApiC all ac)

{
registroApi.Add(nombre, ac);

}

public void deregistrarFuncionApi(string nombre)

{

registroApi.Remove(nombre);

}

5.2. Definicion de la API de la aplicacion externa

Como dijimos en el apartado anterior, las funciatefsidas como API de la aplicacion externa
deberan tener todas el mismo prototipo: no po@a@bir parametros ni devolver resultados. Sin
embargo ya indicamos que esto no era mas que estd@ude forma y que por tanto nuestras
funciones si que podrian realizar dichas operasienda practica. ¢ C6mo conseguiremos esto?

Tanto la recepcion de parametros como la devolubgoresultados se realizaran de forma explicita
mediante operaciones de la propia funcion de lg é$tecir, sera cada funcion la encargada de
leer desde la maquina virtual los parametros qgeda necesarios y de devolver a la maquina
virtual el resultado generado en caso de ser asi.

Para ello, implementaremos en nuestra maquinaal/imna serie de métodos publicos que puedan
ser llamados desde las funciones API para redbzias las operaciones descritas.

Para la lectura de pardmetros la maquina virtuablglera el dato apilado en la cima de la pila,
siempre teniendo en cuenta su tipo:

public int obtenerParametrolnt()

{
return (int)pila.pop();
public float obtenerParametroFloat()

return pila.pop();
}

public bool obtenerParametroBool()

{

Version 0.1 (Borrador) 57

Proyecto FKScript Salvador Gomez

return pila.pop() == OF ? false : true;

}
public string obtenerParametroString()

{
return heap[(int)pila.pop()];

}

Y para la devolucion de resultados la maquina airse limitar4 a apilar el dato proporcionado por
la funcidn API, teniendo en cuenta su tipo pareoelecto almacenamiento y acciones adicionales
(como por ejemplo el registro de una cadena esbla de literales):

public void devolverRetornolnt(int ret)

pila.push((float)ret);

public void devolverRetornoFloat(float ret)

pila.push(ret);

public void devolverRetornolnt(bool ret)

pila.push(ret == true ? 1F : OF);
}

public void devolverRetornoString(string ret)
heap.Add(ret);

pila.push((float)heap.Count-1);

Como ejemplo, imaginemos que tenemos que implemengafuncion externa que indique si un
determinado numero entero es par. Nuestra funeidbira como parametro un nimero entero y
devolvera como resultado un booleano. La implentgimiagquedaria de la siguiente forma:

public void esPar() //Prototipo real: bool esPar(int num)

{

bool res = false;

/[Leemos el parametro desde la maquina virtual
int num = vm.obtenerParametrolint();

if(num % 2 == 0)
res = true;

/[Devolvemos el resultado a la maquina virtual
vm.devolverRetornoBool(res);

Version 0.1 (Borrador) 58

Proyecto FKScript

Salvador Gémez

ANEXO

Especificacion del lenguaje FKScript

Version 0.1 (Borrador)

59

Proyecto FKScript Salvador Gomez

Indice

. Programa FKScript
. Tipos de datos
. Declaracion de variables
. Instrucciones
4.1.Asignaciones
4.2.Intruccion IF
4.3.Instruccion WHILE
4.4.Instruccion RETURN
5. Expresiones
5.1.Expresiones aritméticas
5.2.Expresiones logicas
5.3.Expresiones de cadena
6. Ejemplo programa FKScript

A WN B

1. Programa FKScript

Un programa en FKScript estard compuesto por umade declaraciones de funciones APl y una
Unica funcion expresada mediante la sintaxis sijeie

declaraciones-api

program tipo n ombrePrograma

{
}

El tipo podra ser cualquiera de los indicados en el apagiuiente e indica el tipo de dato del
valor devuelto por el programa.

...CodigoPrograma...

Por su parte, las declaraciones de la API seglarantacion siguiente:

api tipo nombreFuncion (lista _parametros);

La lita de pardmetros estara formada por una derteclaraciones de variable separadas por
comas. Un ejemplo de delaracion de funcion sesaalente:

api int sumaEnteros (int enterol, int entero2);

2. Tipos de datos

Los tipos de datos permitidos seran:

int Valor numérico entero
float Valor numérico real
bool Valor l6gico

Version 0.1 (Borrador) 60

Proyecto FKScript Salvador Gomez

string Cadena de caracteres

3. Declaraciéon de variables

La declaracion de variables en FKScript se redidarla misma forma que en los lenguajes C# o
Java, con la diferencia de no poder inicializaisbalvariable en la propia declaracién. La sintaxis
sera la siguiente:

Tipo NombreVariable ;

El tipo de dato debe ser uno de los indicados apattado anterior y el nombre de la variable debe
cumplir las siguientes reglas:

1. Comenzar por una letra o por el caracter deagado ' '

2. El resto de caracteres deben ser digitos, letcasacteres de subrayado

El lenguaje sera sensible a mayusculas y minasqubdago que identificadores como por ejemplo
NumLinea y numlinea se consideraran distintos.

Como ejemplo, para declarar una variable de tiperedlamada numeroFila utilizaremos la
siguiente sentencia:

int numeroFila;

4. Instrucciones

4.1. Asighaciones

Las instrucciones de asignacién seran idénticas dd C# o Java, siguiéndose la siguiente sintaxis:
NombreVariable =e xpresion ;

La expresion asignada podra ser un literal, untifieacdor o cualquier operacion entre ellos. Asi
por ejemplo, seran asignaciones validas:

miVariable = 3;

miOtraVariable = miVariable;
otraVariableMas = 3 + (miVariable * 5);

4.2. Instruccion condicionali f

La instruccionf seguira la siguiente sintaxis:

if (expresionLogica)

{
}

else

{

Version 0.1 (Borrador) 61

Cddigo ejecutado cuando 'expresionLogica’ es cierta

Proyecto FKScript Salvador Gomez

Cadigo ejecutado cuando 'expresionLogica’ es falsa

}

El blogueelse sera opcional en esta instruccion.

4.3. Instruccion iterativawhi | e

La instrucciénwhile seguira la siguiente sintaxis:

while (expresionLogica)

{
}

Caodigo ejecutado mientras ‘expresionLogica’ es cier ta

4 .4. Instruccidénr et ur n

La instruccionreturn se utilizara para indicar la expresion devueltagigrograma y seguira la
siguiente sintaxis:

return expresion

5. Expresiones

5.1. Expresiones Aritméticas

Las expresiones aritméticas permitidas para lesij yfloat serén las siguientes:

+ Suma
- Resta / Menos unario
* Producto

Division

5.2. Expresiones Logicas

Las expresiones légicas permitidas seran las sitpse

== Igual

I= Distinto

> Mayor

>= Mayor o igual

< Menor

<= Menor o igual

! Negacion logica

5.3. Expresiones de cadenas

Las expresiones entre cadenas permitidas seréiglasntes:

Version 0.1 (Borrador) 62

Proyecto FKScript Salvador Gomez

+ Concatenacion de cadenas

6. Ejemplo programa FKScript

A continuacion se muestra un programa simple esentlenguaje FKScript:
api int sumaEnteros(int el, int e2);

program Prueba

{

int c;
¢ = sumaEnteros(5,2);

if(c > 2)
{

c=1;

}

return c;

Version 0.1 (Borrador) 63

Proyecto FKScript

Salvador Gémez

ANEXO I I

Especificacion del lenguaje FKIL

Version 0.1 (Borrador)

64

Proyecto FKScript Salvador Gomez

indice

1. Programa FKIL.

2. Comentarios.

3. Directivas.

4. Juego de instrucciones.

5. Etiquetas.

6. Ejemplo de programa FKIL.

1. Programa FKIL

Un programa en FKIL estard compuesto por un uniéduio con la siguiente estructura:

directiva_1
directiva_2

instruccion_1
instruccion_2

Nota: Todas las directivas incluidas en el progrdetzeran aparecer antes de cualquier instruccion.

2. Comentarios

Se podran incluir comentarios en el cédigo precetiida una linea con el caracter '#'.

3. Directivas

Las directivas permitidas en FKIL son las siguisnte

Directiva |Descripcidn Valor por defecto
.program |Indica el nombre del programa.

.stack Indica el tamafio maximo de la pila. 1024

.heap Indica el tamafio maximo de la memoria dinamit@24

Jocals Indica el nUmero de variables locales utilizadas. 0

Ejemplos:

.program Prueba
.Stack 1500
.heap 1000
Jocals 4

4. Juego de instrucciones

Version 0.1 (Borrador) 65

Proyecto FKScript

Salvador Gémez

Las instrucciones permitidas en FKIL son las sigigs:

Instruccion [Descripcion N° Par. |Parametro
ipush Coloca una constante entera en la pila 1 Constante
fpush Coloca una constante real en la pila 1 Constarte
spush Coloca una constante cadena en la pila 1 Constante
bpush Coloca una constante booleana en la pila 1 Comstant
iload Carga el valor de una variable entera en la pila 1 N° : de
variable
fload Carga el valor de una variable real en la pila 1 N° . dg
variable
sload Carga el valor de una variable cadena en la pila 1 N° . dg
variable
, . N° de
bload Carga el valor de una variable booleana en la pila 1 :
variable
istore Almacena en una variable entera el primer eleméata pila | 1 N° : d¢
variable
. . : Ne de
fstore Almacena en una variable real el primer elementagda |1 variable
sstore Almacena en una variable cadena el primer elensinta pilal Cl;riable de
b Almacena en unaariable booleana el primer elemento d N© de
store) 1 :
pila variable
pop Elimina el primer elemento de la pila 0
iadd Suma de enteros 0
fadd Suma de reales 0
isub Resta de enteros 0
fsub Resta de reales 0
imul Producto de enteros 0
fmul Producto de reales 0
idiv Division de enteros 0
fdiv Division de reales 0
nneg Negacion numérica 0
bneg NO légico 0
ncmp Comparacion numerica 0
bcmp Comparacion booleana 0
goto Salto incondicional 1 Etiqueta
ifeq Salto si igual a 0 1 Etiqueta
ifne Salto si distinto de 0 1 Etiqueta
iflt Salto si menor que O 1 Etiqueta
ifgt Salto si mayor que O 1 Etiqueta
ifge Salto si mayor o igual que 0 1 Etiqueta
ifle Salto si menor o igual que 0 1 Etiqueta
scmp Comparacion de cadenas 1 Etiqueta
sadd Concatenacion de cadenas 1 Etiqueta
iret Retorno de entero 0
fret Retorno de real 0
Version 0.1 (Borrador) 66

Proyecto FKScript Salvador Gomez

sret Retorno de cadena 0

bret Retorno de booleano 0

callapi Llamada a funcién de la API externa 1 Nomp're
Funcidn

La maquina virtual se basara unicamente en lagolalo que los parametros de la mayoria de las
instrucciones deberan apilarse antes de ejecuitasttaccion.

5. Etiguetas

Las etiquetas incluidas en el codigo, a las cyadelsan hacer referencia todas las instrucciones
condicionales se indicaran con un identificadraugmgdel caracter "'

Ejemplo:

ifeq etiquetal
ipsuh 1

etiquetal:
ipush 2

6. Ejemplo programa FKScript

A continuacion se muestra un programa simple esentlenguaje FKScript:
#Programa de prueba

.program Prueba
Jocals 1

ipush 5
istore O
ipush 1
fload O
ipush 2
ncmp
ifgt etigl
pop
ipush 0
etiql:
ifeq
etiq2
ipush 1
istore O
goto etig3
etiq3:
fload O
ipush 3
fdiv

fret

Version 0.1 (Borrador) 67

