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Hidden Markov Models
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A random sequence has the Markov property If its
distribution is determined solely by its current state. Any
random process having this property is called a Markov
random process.

For observable state sequences (state is known from
data), this leads to a Markov chain model.

For non-observable states, this leads to a Hidden Markov
Model (HMM).
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Game:

You bet $1

You roll (always with a fair die)

Casino player rolls (maybe with fair die, maybe with loaded die)
Highest number wins $1

Honest casino: it has one dice:

Fair die: P(1) =P(2) =P(3) =P(5) =P(6) = 1/6
Crooked casino: it has one dice:

Loaded die: P(1)=P(2)=... =P(5) =1/10 P(6) = 1/2
Dishonest casino: it has two dice:

Fair die: P(1) = P(2) = P(3) = P(5) =P(6) = 1/6

Loaded die: P(1)=P(2)=... =P(5)=1/10 P(6) = 1/2

Casino player approximately switches back-&-forth between
fair and loaded die once every 20 turns
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HOneSt casino 2143416525151446324543346435315

561444424313265254553322564322146531652645114264646121545451111

612161663625146542414421644435521252561452516311656154562161546

625445222333261464525442366346142433516151255316122463613344516

133244521634551643665312355443144541261331341336642115143434351
62421441161665126

Crooked casino: 563343463666126665661222626666526
6365666536154141356653156266566616312115612266666546665662662666 1
66625664532421565326163656642546633613665666454662241566134664436
21226646646641466116426366663662665565565265666214345663633466636
55266623516666554665432614666436616656526361642662466556166631636

2266665

Dishonest casino: 666155541664643156631336264365232
166625555366464614525622235354643566661663126115521153421336426
636116663553453541336126434536564614262614566136162416661662443
626163552655265536266644436663566652166643162313212666666665664
661664316364415261366626653626331236365622536544511242152615634

651534446346225
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Honest casino '

123456

Crooked casino:

123456

LOADED

P(1) = 1/6
P(2) = 1/6
P(3) = 1/6
P(4) = 1/6
P(5) = 1/6
P(6) = 1/6
123456 |
P(1) = 1/10
P(2) = 1/10
P(3) = 1/10
P(4) = 1/10
P(5) = 1/10
P(6) = 1/2

> L
1234 56

()
123456
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Dishonest casino:
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.. P(4) = (1/10)* x (1/2)6 = 1.6 x 10
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Definition: A hidden Markov model (HMM)
Alphabet X ={a,b,c,...} ={b,, b,, ..., b, }
Set of states Q={1,...,q}
Transition probabilities between any two states:

P = transition prob from state i to state |

P+ ... +py,=1, forallstatesi=1...q
Start probabilities py; such that pg; + ... ¥ po, = 1
Emission probabilities within each state
e(b)=P(x=b|q=i)
e, + ... +e(b,) =1, forall statesi=1...q

()
()




General questions 2 | g

group .

Evaluation problem: how likely is this sequence, given our model
of how the casino works?

GIVEN a HMM M and a sequence X, FIND Prob[ x| M ]

Decoding problem: what portion of the sequence was generated
with the fair die, and what portion with the loaded die?
GIVEN a HMM M, and a sequence X,
FIND the sequence = of states that maximizes P[ X, = | M ]

Learning problem: how “loaded” is the loaded die? How “fair” is
the fair die? How often does the casino player change from fair
to loaded, and back? Are there only two dies?

GIVEN a HMM M, with unspecified transition/emission probs. 6 ,
and a sequence X,

FIND parameters 0 that maximize P[ x| 6]
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We want to calculate
P(x | M) = probability of a sequence x, given the HMM M
= Sum over all possible ways of generating x:

Givenx=1,4, 2, 3, 6, 6, 3..., how many ways generate x?

Honest casino: only one way

123456 123456 123456 1234 56

Crooked casino: only one way

: D : Q : Q ---------- ->
56 123456 123456 123456

Dishonest casino: ?
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We want to calculate

P(x | D) = probability of x, given the HMM D
= Sum over all possible ways of generating x:

> » (F fk---------- >
\\ v
125456 | T3 56 -,
..' \J \\\ ,/,
.. /<\

Given x=1, 4, 2, 3, 6, 6, 3..., how many ways generate x? 2 I

Naive computation is very expensive: given |x| characters and N
states, there are Nl possible state sequences. Even small
HMMs, [x|=10 and N=10, contain 10 billion different paths!
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P(x ) = probability of x, given the HMM D
= Sum over all possible ways of generating x:
= X P n) = Z P(x|n) P(n)

3
R £ i

. probability

X1Xo. .. X
.......... L(I)

Then,deﬂne
f (1) = P(Xy...%, m = K)  (the forward probability)
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...............................

R < 0
D, C...

The forward probability recurrence: \:h f,(0) = 1
f (1) = P(Xq...%;, m = K) f.(0)=0, forallk >0
= Zhet.q P(Xg-- X0, Mg = NPy €4 (X))

_ _ and cost
= €y(X) Zp=1. g P(Xq---Xi.q, g = )Ppy

| space: O(NQ)
= €,(%) Zp=1.q f(i-1) Prg time: O(Ng?
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(1|F) = 1/6
(2|F) = 1/6
(3|F) = 1/6
(4|F) = 1/6
(5|F) = 1/6
(6|F) = 1/6
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P
P
P
P
P
P

1IL
2|L

4L
5L
6L

(1IF) =
(2|F) =
(3IF) =
(4F) =
(5IF) =
(6F) =

P(1]L)
P(2|L)
P(3|L) =
P(4|L)
P(5IL)
P(6IL)

1/6
1/6
1/6
1/6
1/6
1/6

=1/10
=1/10

1/10

=1/10
=1/10
=1/2

005

0. 0136 —

>< >< 1234 56 | 23456

|

0.0052 ——

f (1) = €(%) Zp=g g Th(1-1) Prg

234 56

234 56

i) 0 1 2

F | 0 1/12 0.0136
0.083

L | 0 1/20 0.0052
0.05
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1|F) = 1/6 X=1 2

(

i e 10.08 0.0136 — 0. 00219 e W R
(
(
(

X
4|F) = 1/6 234 56 e
5|F) = 1/6
6|F) = 1/6

1IL) = 1/10

P
P
P
P
P
P

oIl = 110 o 05 0.0052 0.00071 —» (L}
oL = 110 |
P(5|L) = 1/10 . 0
P(6IL) = 1/2 fk(l) — ek(xi) thl..q fh(l'l) phk
f) 0 1 2 5
F |0 1/12 0.0136
008 0.002197
L | 0 1/20 0.0052
005 0.000712

Then P(125) = 0.003909
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466161543563212235651461161353356235522223453255546534266125642
332116125444442464322234561515163233421611352563326433532632166
3614343113143355412444260212RRAR4424915126356416265545522225434
16334631456426162 i 2632632263454226513641121
15313352311633632 HoneSt casino 4565261322353562413314156
152414115133316230c4v40120cv0v0c1914416326524424445643655635331
643651613214414256642654443462561655113245526263115646516313166
15614644632653114233635136126321325451623612612542466112312

Prob (S | Honest casino model) = exp (-896)
Prob (S | Dishonest casino model)= exp (-916)

6662452153566315236364136655231252433662616662644623112135121621
6366262666166633646664554455435162461664666256464165453211654363
261233636431115&8272119429494c0A04044100CH)45152316215116614431656
661116614553612¢ I I >366614625656666661115456
416231664265666° DIShonESt casino 666461114631126446662616
115662563566314500 1040 1410000000020 140543422566346615163251646
6416634516566244335345125226626656151541646166625434642663434315
5464326645554652246536222615623656664653666342225664

Prob (S | Honest casino model ) = exp (-896)
Prob (S | Dishonest casino model )= exp (-847)
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Evaluation problem: how likely is this sequence, given our model
of how the casino works?

GIVEN a HMM M and a sequence X, FIND Prob[ x| M ]

Decoding problem: what portion of the sequence was generated
with the fair die, and what portion with the loaded die?
GIVEN a HMM M, and a sequence X,
FIND the sequence = of states that maximizes P[ X, = | M ]

Learning problem: how “loaded” is the loaded die? How “fair” is
the fair die? How often does the casino player change from fair
to loaded, and back?

GIVEN a HMM M, with unspecified transition/emission probs. 6 ,
and a sequence X,

FIND parameters 0 that maximize P[ x| 6]
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1234 56 1234 56 1234 56 1234 56

We want to calculate path ©° such that
n = argmax, P(X, © | M)
= the sequence r of states that maximizes P(X, © | M)

Naive computation is very expensive: given |x| characters and N
states, there are Nl possible state sequences.
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*

n = argmax; P(x, © | M)
= the sequence r of states that maximizes P(X, © | M)

X3 X

......... S 1(i) The

sequence

0 :‘ 2(i) of states
that
maximizes

...... ARy 0 Vq(l) 1772 |

Then, define

v (I) = argmax  P(X;...X;, m = K)
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0 1)
(2) & 2
,‘ ........................ >
= o _
o Vi(1)
. <
BT T 0

The forward probability recurrence:
Vi (1) = argmax . P(X;...X, m; = K)

= max;, [argmax ; P(Xy...Xi1, g = )Ppy €(X)]
= €(x) max, [Py argmax  P(Xy...Xq, miq = )]

= €y (%;) max; [Pry Vi(l-1)]
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1IL) = 1/10

E§2|L§ - 1/10
P(3|L) = 1/10 Uiz
P(4IL) = 1/10 |
P(5IL) =
P(6IL) =

5|L) = 1/10

6|L) = 1/2 fk(l) :ek(xi) maXh:]___q Vh(i'l) Phk
f(i) 0 1 2 5
F |0 1/12
0.08
L |0 1/20
0.05
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11F) =
2|F) =
3|F) =
4|F) =
5|F) =
6|F) =

1IL
2|L
3L

5L
6L

)

)

)
4|L) =

)

)

1/6
1/6
1/6
1/6
1/6
1/6

=1/10
=1/10
=1/10

1/10

=1/10
=1/2

0013 —

>< >< 1234 56 | 23456

0.0047 ———
LL 234 56

f (1) = € (X)) MmaX,_; o Vh(-1) Py

234 56

() 0 1 2

F | 0 1/12 | max(0.013, 0.0004)
0.08 | 0.013

L | 0 1/20 | max(0.00041,0.0047)
0.05 | 0.0047
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1F) = 1/6 x=1 2
2IF) = 1/6 O 083 0.013 —— 0. 0022 ---------- >

3|F) = 1/6

X
4|F) = 1/6 234 56 e
5|F) =1/6 //
6|F) =1/6

1IL

=1/10

21}~ 1110 o 05 0.0047 0.00049 —» (| W ieeeee
2 - 1/10 L] LL LLL
5|L) = 1/10 _ _
olL) =172 f (1) = € (X)) maxp=; o Vh(i-1) Prg
0 1 2 5

F | 0 1/12 | max(0.013, 0.0004) | Max(0.0022,0.000043)

0.08 | 0.0126 0.0022
L | 0 1/20 | max(0.00041,0.0047) Max(0.000068,00049)
0.05 | 0.0047 0.00049

Then, the most probable path is FFF !
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Dishonest casino sequence of values:

6662452153566315236364136655231252433662616662644623112135121621
6366262666166633646664554455435162461664666256464165453211654363
2612336364311155321124321246636461466665245152316215116614431656
6611166145536126126146666364514656556636366614625656666661115456
4162316642656665453334241661466661155466666461114631126446662616
1156625635663145661645141336666332622145543422566346615163251646
6416634516566244335345125226626656151541646166625434642663434315
5464326645554652246536222615623656664653666342225664

Dishonest casino sequence of states:

2221111111111 1111111111111 1111111111122222222222221111111111122 22
22222222222222222222111111111112222222222222222222111111111111111
TM111 1111 111111111111111122222222222211111111111111111111112222 22
22222222222222222222222222222222222222222222222222222222222222222
222222222221 11111111122222222222222222222222222222222222222222222
2222222222222222222222222211 1111111111111 1222222222222222222222272
2222222111111ttt 111111t 1ttt 1t 111111111 1111111111 11
"Mttt 1ttt 1ttt 11111111111 111111111111 11
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Evaluation problem: how likely is this sequence, given our model
of how the casino works?

GIVEN a HMM M and a sequence X, FIND Prob[ x| M ]

Decoding problem: what portion of the sequence was generated
with the fair die, and what portion with the loaded die?
GIVEN a HMM M, and a sequence X,
FIND the sequence = of states that maximizes P[ X, = | M ]

Learning problem: how “loaded” is the loaded die? How “fair” is
the fair die? How often does the casino player change from fair
to loaded, and back?

GIVEN a HMM M, with unspecified transition/emission probs. 6 ,
and a sequence X,

FIND parameters 0 that maximize P[ x| 6]
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How “loaded” is the loaded die? How “fair” is the fair die? How
often does the casino player change from fair to loaded, and
back?

GIVEN a HMM M, with unspecified transition/emission probs. 6 ,
and a sequence X,

FIND parameters 0 that maximize P[ x| 0]

We need a training data set. It could be:

A sequence of pairs (X,11) = (X{,T,), (X5,TT, ), ... ,(X,,TT,)
where we know the set of values and the states.

A sequence of singles X = X;,X,, ... ,X, where we
only know the set of values.
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From the training set we can define:

H,; as the number of times the transition from state k to state |
appears in the training set.

J,(x) as the number of times the value x Iis emitted by state |.

For instance, given the training set: Fair die,

125236451 4263231645
324246541 312415463
231 51324 54123214654
Je(1) = 10 Je(2) =11 J:(3)=9

Je (4) = 12 J(5) =8 J. (6) =6
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From the training set we have computed:

H,. as the number of times the transition from state k to state i appears in the
training set.

J|(r) as the number of times the value r is emitted by state |.

And we estimate the parameters of the HMM as
Pu=Hi/ (Hat ... + Hy).
H-.-=51 H, =4 H. =4 H, =26
Pee = 51/85=0.6 P = 0.045 P.e=0.045 p..=0.31
€(r) = Jy(r) /(4(r) +...+ Jy(r) )
Je(1) =10 e-(1)=10/56 J-(2)=11 e (2)=2/56 J(3)=9 ec(3)=3/56
J-(4)=12 e-(4)=0.21  J-(5)=8 er(5)=0.054 J-(6)=6 e-(6)=0.1

Ji(1)=0 J(2) =5 J (3)=6
J (4)=3 J (5)=1 J, (6) =14
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To choose the parameters of HMM that maximize
P(x1) x P(x?) x ...x P(x")
that implies

The use of standard (iterative) optimization algorithms:
Determine initial parameters values

Iterate until P(x1) x P(x?) x ...x P(x") becomes smaller that
some predeterminated threshold

but

the algorithm may converge to a point close to a local maximum,
not to a global maximum.
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From the training x=1-" we estimate MO:
P as the probability of transitions.
e (r) as the probability of emissions.

Do (we have MS)

Compute H,; as the expected number of times the transition
from state k to state | is reached.

Compute J|(r) as the expected number of times the value r is
emitted by state |.

Compute
P =Hii/ (Hp + ... + Hg) and g(r) = Ji(r) /(JIo(r) +...+ Jy(r) ).
{ we have Ms+1}
Until some value smaller than the threshold
{ M is close to a local maximumj}



Recall forward and backward algorlthms g en
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Xi+2

L a,b.c.. b.c...

The forward probability recurrence:
B (1) = P(Xq...x;, m = K) = €(X) Zp=g. g Ta(-1)

The backward probability recurrence:
b(i+1) = P(Xj1---Xny vy = 1) = By g Pin €n(Xis2) BR(i+2)
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J,(r) = the expected number of times the value r is emitted by state k.

= D x 2 ali Prob(state k emits r at step i in sequence X)

- Prob(x;...x,| state k emits x, )
— Zall X Z all i
Prob(x;...x,)

o(r = X,

= Dallx 2 alll fill) D)
Prob(x;...x,)
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H,,(r) = as the expected number of times the transition from k to | is reached

= Daix 2 ani Prob(transition from k to | is reached at step 1 in x)

Prob(x,...x,| state k reaches state | )

= 2alix 2 all Prob(x;...Xp)

=SS al fi(1) Py €1(Xi+1) by(i1+1)
Prob(x;...x,)
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H,; as the expected number of times the transition from state k to

state | appears. £ G (%) by(i+1)
Ho() =Sy S 1) P €1(Xi11) DI+
k'() Zailx 2 a Prob(x;...x,)

Ji(r) as the expected number of times the value r is emitted by
state |.

() =2aix 2 ani fild) D) o(r = X;)
Prob(x;...X,)

And we estimate the new parameters of the HMM as
P =Hyi/ (He + ... + Hy).
e(r) = J(r) /(Ja(r) +...+ Jy(r) )
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The algorithm has been applied to the sequences..

For |S|=500:
M=6 N=2 POF=0.004434 POL=0.996566
PFF=0.198205 PFL=0.802795 PLL=0.505259 PLF= 0.495741
0.166657 0.150660 0.054563 0.329760 0.026141 0.277220
0.140923 0.095672 0.152771 0.018972 0.209654 0.387008
pI:
0.004434 0.996566

For |S|=50000:
M= 6 N=2 0.027532 0.973468
0.127193 0.873807
0.299763 0.701237
0.142699 0.166059 0.097491 0.168416 0.106258 0.324077
0.130120 0.123009 0.147337 0.125688 0.143505 0.335341



