
Getting started
Download and install Flex Builder 2 if you haven't done so already. To start, you must create the
database. I've called mine sample, but you can call yours whatever you like. Next, create a table that
will hold the user data. Here is the SQL script you can use to create the table:
CREATE TABLE 'users' (
 'userid' int(10) unsigned NOT NULL auto_increment,
 'username' varchar(255) collate latin1_general_ci NOT NULL,
 'emailaddress' varchar(255) collate latin1_general_ci NOT NULL,
 PRIMARY KEY ('userid')
) ENGINE=MyISAM DEFAULT CHARSET=latin1 COLLATE=latin1_general_ci
AUTO_INCREMENT=3 ;

Next, you'll create the PHP script that adds users and exports the XML that the Flex application will
consume. The script is relatively simple and consists of 25 lines of code. Note the use of the
quote_smart function as a best practice to help verify user input, according to the PHP.Net
website.
<?php
Define("DATABASE_SERVER", "localhost");
Define("DATABASE_USERNAME, "username");
Define("DATABASE_PASSWORD", "password");
Define("DATABASE_NAME", "sample");

//connect to the database
$mysql = mysql_connect(DATABASE_SERVER, DATABASER_USERNAME, DATABASE_PASSWORD);

mysql_select_db(DATABASE_NAME);

// Quote variable to make safe
function quote_smart($value)
{
 // Stripslashes
 if (get_magic_quotes_gpc()) {
 $value = stripslashes($value);
 }
 // Quote if not integer
 if (!is_numeric($value)) {
 $value = "'" . mysql_real_escape_string($value) . "'";
 }
 return $value;
}

if($_POST["emailaddress"] AND $_POST["username"])
{
 //add the user
 $Query = sprintf("INSERT INTO users VALUES ('', %s, %s)",
quote_smart($_POST["username"], quote_smart($_POST["emailaddress"])";

 $Result = mysql_query($Query);
}

//return a list of all the users
$Query = "SELECT * from users";
$Result = mysql_query($Query);

$Return = "<users>";

while ($User = mysql_fetch_object($Result))
{
 $Return .= "<user><userid>".$User->userid."</userid><username>".$User-

http://PHP.Net/

>username."</username><emailaddress>".$User-
>emailaddress."</emailaddress></user>";
}
$Return .= "</users>";
mysql_free_result($Result);
print ($Return)
?>

Here is a quick explanation of the PHP code. The $_POST variable is populated with values from
the Flex application with two required fields: emailaddress and username. If a user enters
information for both of those, the PHP code adds the user to the database. After that, the PHP code
returns a list of users in XML format.

Note: You cannot pass PHP variables to Flex applications directly. You must encode them in XML
first. By abstracting the user interface from the data retrieval, you can easily change how you
display data. For example, you could use this same PHP script to pass data to a mobile phone
version of the same application. All you would need for that is to write the front end of the
application, the back-end PHP script would remain the same.

Up until now, everything should be familiar to you. You have a PHP script and a MySQL database.
Now it's time to start building the interface to the application.

Building the user interface
Flex applications use a combination of ActionScript 3.0 and MXML. ActionScript is based on
ECMAScript (similar to JavaScript), so it should be familiar to web developers. MXML is an
XML-based layout engine for Flex applications. Essentially, you lay out the user interface using
XML, and script the user interface using ActionScript. The MXML for the interface is, again, very
simple (only 26 lines):
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
layout="absolute" creationComplete="userRequest.send()">
 <mx:HTTPService id="userRequest" url="http://localhost/flex/php/request.php"
useProxy="false" method="POST">
 <mx:request xmlns="">
 <username>{username.text}</username><emailaddress>{emailaddress.text}</
emailaddress>
 </mx:request>
 </mx:HTTPService>
 <mx:Form x="22" y="10" width="493">
 <mx:HBox>
 <mx:Label text="Username"/>
 <mx:TextInput id="username"/>
 </mx:HBox>
 <mx:HBox>
 <mx:Label text="Email Address"/>
 <mx:TextInput id="emailaddress"/>
 </mx:HBox>
 <mx:Button label="Submit" click="userRequest.send()"/>
 </mx:Form>
 <mx:DataGrid id="dgUserRequest" x="22" y="128"
dataProvider="{userRequest.lastResult.users.user}">
 <mx:columns>
 <mx:DataGridColumn headerText="User ID" dataField="userid"/>
 <mx:DataGridColumn headerText="User Name" dataField="username"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:TextInput x="22" y="292" id="selectedemailaddress"
text="{dgUserRequest.selectedItem.emailaddress}"/>
</mx:Application>

Let's examine each line in detail. These are the first two lines of each Flex application:
<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" xmlns="*"
layout="absolute" creationComplete="userRequest.send()">

The first line declares that this is an XML document. The second line declares that this is an
Application, provides the namespace for MX components, declares the layout to be absolute (which
means that you can position items to the exact x and y coordinates. Other options are horizontal
layouts or vertical layouts), and finally creationComplete="userRequest.send()"
specifies that on completion of loading the user interface, the application calls the function send()
on the MXML element with the id userRequest.

The following section sets up HTTPService to send and receive data from the PHP script you
created:
<mx:HTTPService id="userRequest" url="http://localhost/flex/php/request.php"
useProxy="false" method="POST">
 <mx:request xmlns="">
 <username>{username.text}</username><emailaddress>{emailaddress.text}</
emailaddress>
 </mx:request>
 </mx:HTTPService>

In this section, you set the id to userRequest, and provide a URL to the PHP script. You set the
method of submit to POST (you could also use GET, but then you must change the variables in the
PHP script). The request itself contains two variables, username and emailaddress. This code
also sets the value for username to the text attribute of the element with id username
(username.text) and the value for the PHP variable _POST["emailaddress"] is set to the
text attribute of the element with id emailaddress (emailaddress.text). The { and }
brackets bind the variables to the value of the user interface elements.

To be clear, if you changed <username> to <user_name>, you would have to change the PHP
variable to _POST["user_name"]. If you change {username.text} to
{user_name.text}, you would have to modify your MXML: you would have to change the
element with the ID of username user_name.

Creating a form
Next, you will build a simple form:
<mx:Form x="22" y="10" width="493">
<mx:HBox>
 <mx:Label text="Username"/>
 <mx:TextInput id="username"/>
 </mx:HBox>
 <mx:HBox>
 <mx:Label text="Email Address"/>
 <mx:TextInput id="emailaddress"/>
 </mx:HBox>
 <mx:Button label="Submit" click="userRequest.send()"/>
</mx:Form>

Note that you can lay out the exact x and y coordinates of the form and set its exact width. Then,
two HBoxes surround a label and text input, allowing them to flow from left to right, one above the
other. Finally, your Submit button appears at the end of the form. When a user clicks the button, the
application calls the send() function of the element with ID userRequest (in this case, it is the
HTTPService element).

Now that you have created the functionality that submits new entries to the database, how do you
display them? Use the following code:
<mx:DataGrid id="dgUserRequest" x="22" y="128"
dataProvider="{userRequest.result.users.user}">
 <mx:columns>
 <mx:DataGridColumn headerText="User ID" dataField="userid"/>
 <mx:DataGridColumn headerText="User Name" dataField="username"/>
 </mx:columns>
 </mx:DataGrid>
 <mx:TextInput x="22" y="292" id="selectedemailaddress"
text="{dgUserRequest.selectedItem.emailaddress}"/>
</mx:Application>

In this case, you have a DataGrid component that populates itself with the XML from the
userRequest HTTPService. You return an XML document. In this case, you bind the DataGrid
component to the user elements in the XML document that is returned. The returning XML looks
something like the following:
<users>
<user>
<userid>1</userid>
<username>Joe Schmoe</username>
<emailaddress>joe@schmoe.com</emailaddress>
</user>
<user>
<userid>2</userid>
<username>Betty Schmoe</username>
<emailaddress>betty@schmoe.com</emailaddress>
</user>
</users>

Note that you bind to the actual elements that are returned, not to the wrapper element around them.

The DataGrid component displays the user id and user names of people in the database. I decided
not to show the e-mail address in the datagrid, but you could add another column with that
information in it. Note that the columnName element needs to map directly to the XML elements.
The DataGrid element will take care of allowing your users to sort and highlight the rows as they
are selected—you don't need to do anything for that!

Finally, you have a TextInput element that shows the e-mail address of the selected user,
dgUserRequest.selectedItem.emailaddress, and then an XML tag that closes the
application.

That's it. You have a simple Flash application that submits and retrieves data from a MySQL
database, using PHP as a back end.

Where to go from here
I urge you to download Flex Builder 2 and build more complicated applications using PHP,
MySQL, and Adobe Flex. Check out my blog for more information on Adobe Flex 2 and please
provide suggestions for future articles and what other samples you'd like to see using this set of
technologies. You may also want to read my article, Using Flex 2 and AMFPHP.

http://www.adobe.com/devnet/flex/articles/flex2_amfphp.html
http://blogs.adobe.com/mikepotter/

	Getting started
	Building the user interface
	Creating a form
	Where to go from here

