Manually Configuring Your DataAdapter
Objects

The DataAdapter object exposes four properties that contain Command objects.
You've already learned that the SelectCommand property contains the Command
that the DataAdapter uses to fill your DataTable. The other three properties—
UpdateCommand, InsertCommand, and DeleteCommand—contain the Command
objects that the DataAdapter uses to submit pending changes.

This architecture represents a major change from the ADO object model. There
is no magical “black box” technology involved. You control how the DataAdapter
submits pending changes because you supply the Command objects that the
DataAdapter uses.

The DataAdapter object’s Update method is very flexible. You can supply a
DataSet, a DataSet and a table name, a DataTable, or an array of DataRow objects.
Regardless of how you call the DataAdapter object’'s Update method, the
DataAdapter will attempt to submit the pending changes through the appropriate
Command. All the work we performed earlier in the SubmitChangesByHand
procedure can be accomplished using a single call to the DataAdapter object’s
Update method.

Introducing Bound Parameters

The SubmitChangesByHand procedure that we created was not terribly
complex. The procedure also didn’t do much work. Instead, it delegated the nasty
work to one of three functions: SubmitUpdate, SubmitInsert, or SubmitDelete. These
functions populate the values for the parameters in the appropriate query based on
the contents of the modified row.

We’'ll use the same parameterized queries to submit pending changes using a
DataAdapter.

UPDATE [Order Details]
SET OrderID = ?, ProductlD = ?, Quantity = ?, UnitPrice = ?
WHERE OrderlID = ? AND ProductID = ? AND
Quantity = ? AND UnitPrice = ?

INSERT INTO [Order Details] (OrderlID, ProductlD, Quantity, UnitPrice)
VALUES (?, ?, ?, ?)

DELETE FROM [Order Details]
WHERE OrderlID = ? AND ProductlID = ? AND
Quantity = ? AND UnitPrice = ?

However, when we add Parameter objects to the DataAdapter object’s
Command objects, we'll use two properties of the ADO.NET Parameter object that
are designed specifically for updates using the DataAdapter: SourceColumn and
SourceVersion.

These properties basically bind a Parameter to a DataColumn in your
DataTable. The DataAdapter uses these properties to determine how to populate the
Parameter object’s Value property before executing the query, similar to how we

accomplished this task in the SubmitUpdate, SubmitInsert, and SubmitDelete
functions. Figure 10-2 better illustrates this behavior.

S Prowdoall | Qo= i

L& sl

: | I LS o =0 @
CNPPE R

IMA™" “rdem Tetat s
bl Crder D o= Y, PrcduetlDd = Y. Ol _nTity = ¥, LedtPeie = ¥
MAERZ Wmrar D - ¢ A0 Sode i [= F &R Dudanli.x - ¥ sHD i _Fiaes = 7

LS,

2 s — (I L L | e
L0 I R B B

Jws D M oumA D iy Ui i

Figure 10-2
Binding Parameter objects to DataColumn objects.

The following code snippet creates our parameterized Command objects but sets
the SourceColumn and SourceVersion properties of the Parameter objects. The
default value for the SourceVersion property is DataRowVersion.Current, SO we
need to set the property only if we want to bind the Parameter objects to the original
values in the desired column.

Visual Basic .NET

Private Function CreateDataAdapterUpdateCommand() As OleDbCommand
Dim strSQL As String
strSQL = "UPDATE [Order Details] ™ & _
" SET OrderID = ?, ProductID = ?, ™ & _
" Quantity = ?, UnitPrice = ? " &
" WHERE OrderID = ? AND ProductlID
" Quantity = ? AND UnitPrice

Dim cmd As New OleDbCommand(strSQL, cn)

? AND " & _
?ll

Dim pc As OleDbParameterCollection = cmd.Parameters
pc.Add("'Order1D_New'™, OleDbType.Integer, 0, "OrderlID™)
pc.Add("'ProductlD _ New', OleDbType.Integer, 0, "ProductlD™)
pc.Add("'Quantity_ New'™, OleDbType.Smalllnt, 0, "Quantity')
pc.Add('UnitPrice_New'™, OleDbType.Currency, 0, "UnitPrice™)

Dim param As OleDbParameter

param = pc.Add("'OrderlID Orig"™, OleDbType.Integer, 0, "OrderlID™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add(*'ProductID_Orig™, OleDbType.Integer, 0, _
"ProductlID™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add('Quantity Orig"™, OleDbType.Smalllnt, 0, _
"Quantity™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add('UnitPrice Orig', OleDbType.Currency, 0, _
"UnitPrice™)

param.SourceVersion = DataRowVersion.Original

Return cmd
End Function

Private Function CreateDataAdapteriInsertCommand() As OleDbCommand
Dim strSQL As String
strSQL = "INSERT INTO [Order Details] " & _
" (OrderiID, ProductlD, Quantity, UnitPrice) "™ & _
" VALUES (?, ?, ?, ?2)"
Dim cmd As New OleDbCommand(strSQL, cn)

Dim pc As OleDbParameterCollection = cmd.Parameters
pc.Add("'OrderID", OleDbType.lInteger, 0, "OrderlID'™)
pc.Add("'ProductlID”™, OleDbType.Integer, 0, "ProductlID™)
pc.Add("'Quantity’, OleDbType.Smalllnt, O, "Quantity")
pc.Add('UnitPrice’, OleDbType.Currency, 0, "UnitPrice™)

Return cmd
End Function

Private Function CreateDataAdapterDeleteCommand() As OleDbCommand
Dim strSQL As String
strSQL = "DELETE FROM [Order Details] " & _
" WHERE OrderlID = ? AND ProductID = ? AND ™ & _
" Quantity = ? AND UnitPrice = ?"
Dim cmd As New OleDbCommand(strSQL, cn)

Dim pc As OleDbParameterCollection = cmd.Parameters

Dim param As OleDbParameter

pc.Add("'OrderiID', OleDbType.Integer, 0, "OrderiD')
param.SourceVersion = DataRowVersion.Original
pc.Add("*ProductlID”, OleDbType.Integer, 0, "ProductlD™)
param.SourceVersion = DataRowVersion.Original
pc.Add("'Quantity’, OleDbType.Smalllnt, O, "Quantity")
param.SourceVersion = DataRowVersion.Original
pc.Add('UnitPrice’, OleDbType.Currency, 0, "UnitPrice™)
param.SourceVersion = DataRowVersion.Original

Return cmd
End Function

Visual C# .NET

static OleDbCommand CreateDataAdapterUpdateCommand()
{
string strSQL;
strSQL = "UPDATE [Order Details] ™ & _
" SET OrderlID = ?, ProductlD = ?, "
" Quantity = ?, UnitPrice = ? "
WHERE OrderlID = ? AND ProductlD = ND ' +
" Quantity = ? AND UnitPrice = ?";
OleDbCommand cmd = new OleDbCommand(strSQL, cn);

N+ +

OleDbParameterCollection pc = cmd.Parameters;
pc.Add('Order1D_New'™, OleDbType.Integer, 0, "OrderlID™);
pc.Add("'ProductlID_New'", OleDbType.Integer, 0, "ProductlD™);
pc.Add("'Quantity_ New'™, OleDbType.Smalllnt, 0, "Quantity');
pc.Add("'UnitPrice_New', OleDbType.Currency, 0, "UnitPrice');

OleDbParameter param;

param = pc.Add('OrderID Orig"™, OleDbType.Integer, 0, "OrderiID™);

param.SourceVersion = DataRowVersion.Original;

param = pc.Add(*ProductID_Orig™, OleDbType.Integer, O,
"ProductlID™);

param.SourceVersion = DataRowVersion.Original;

param = pc.Add(*'Quantity_Orig"™, OleDbType.Smallint, O,
"Quantity™);

param.SourceVersion = DataRowVersion.Original;

param = pc.Add('UnitPrice Orig", OleDbType.Currency, O,
"UnitPrice™);

param.SourceVersion = DataRowVersion.Original;

return cmd;

+

static OleDbCommand CreateDataAdapterInsertCommand()
{
string strSQL;
strSQL = "INSERT INTO [Order Details] " +
" (OrderiID, ProductlD, Quantity, UnitPrice) " +
VALUES (?, ?, ?, ?2)";
OleDbCommand cmd = new OleDbCommand(strSQL, cn);

OleDbParameterCollection pc = cmd.Parameters;
pc.Add("'OrderiID", OleDbType.Integer, 0, "OrderlD");
pc.Add("'ProductlID”™, OleDbType.lInteger, 0, "ProductiD™);
pc.Add("'Quantity’, OleDbType.Smalllnt, O, "Quantity™);
pc.Add('UnitPrice'™, OleDbType.Currency, 0, "UnitPrice™);

return cmd;

}

static OleDbCommand CreateDataAdapterDeleteCommand()
{
string strSQL;
strSQL = "DELETE FROM [Order Details] " +
" WHERE OrderlID = ? AND ProductiID = ? AND " +
" Quantity = ? AND UnitPrice = ?";
OleDbCommand cmd = new OleDbCommand(strSQL, cn);

OleDbParameter param;
OleDbParameterCollection pc = cmd.Parameters;
param = pc.Add('OrderID”, OleDbType.Integer, 0, "OrderiID™);

param.SourceVersion = DataRowVersion.Original;

param = pc.Add('ProductID", OleDbType.Integer, 0, "ProductlD");
param.SourceVersion = DataRowVersion.Original;

param = pc.Add('Quantity’, OleDbType.Smalllnt, 0, "Quantity');
param.SourceVersion = DataRowVersion.Original;

param = pc.Add('UnitPrice"™, OleDbType.Currency, 0, "UnitPrice"™);
param.SourceVersion = DataRowVersion.Original;

return cmd;

We can now replace the SubmitChangesByHand, SubmitUpdate, SubmitInsert,
and SubmitDelete procedures with the following code:

Visual Basic .NET

Private Sub SubmitChangesViaDataAdapter()
da.UpdateCommand CreateDataAdapterUpdateCommand()
da. InsertCommand CreateDataAdapteriInsertCommand()
da.DeleteCommand CreateDataAdapterDeleteCommand()
da.Update(tbl)

End Sub

Visual C# .NET

static void SubmitChangesViaDataAdapter()

{
da.UpdateCommand = CreateDataAdapterUpdateCommand() ;
da. InsertCommand = CreateDataAdapterinsertCommand();
da.DeleteCommand = CreateDataAdapterDeleteCommand();
da.Update(tbl);

by

Using Stored Procedures to Submit Updates

A common complaint of developers who used ADO to retrieve data from their
databases was that they couldn’t use the Recordset object’s UpdateBatch method to
submit updates using stored procedures.

Earlier, | mentioned that the DataAdapter lets you define your own updating
logic. The previous code snippets showed how you can build your own Command
objects that the DataAdapter can then use to submit pending changes. We can use
similar code to submit updates using stored procedures.

First we need to define stored procedures in the Northwind database that can
modify, insert, and delete rows from the Order Details table. You can paste and then
execute the following code in SQL Query Analyzer to create the stored procedures
that we’re going to call in our code. If you don’t have access to SQL Query Analyzer
because you have only MSDE installed, you can call a procedure named
CreateSprocs (which appears in a later code snippet) to create the desired stored
procedures.

USE Northwind
GO

CREATE PROCEDURE spUpdateDetail
(@OrderID_New int, @ProductlD New int,
@Quantity New smallint, @UnitPrice_New money,
@OrderID_Orig int, @ProductlD Orig int,
@Quantity Orig smallint, @UnitPrice_Orig money)
AS
UPDATE [Order Details]
SET OrderID = @OrderID New, ProductlD = @ProductlD New,
Quantity = @Quantity New, UnitPrice = @UnitPrice_New
WHERE OrderID = @OrderID_Orig AND ProductlD = @ProductlD Orig AND
Quantity = @Quantity Orig AND UnitPrice = @UnitPrice_Orig

GO

CREATE PROCEDURE splnsertDetail
(@OrderlID int, @ProductlD int,
@Quantity smallint, @UnitPrice money)
AS
INSERT INTO [Order Details]
(OrderiID, ProductlD, Quantity, UnitPrice)
VALUES (@OrderlID, @ProductlD, @Quantity, @UnitPrice)

GO

CREATE PROCEDURE spDeleteDetail
(@OrderID int, @ProductlD int,
@Quantity smallint, @UnitPrice money)
AS
DELETE FROM [Order Details]
WHERE OrderID = @OrderID AND ProductlD = @ProductlD AND
Quantity = @Quantity AND UnitPrice = @UnitPrice

Now that we have stored procedures that we can call to submit changes to the
Order Details table, we can write Command objects to call those stored procedures
automatically when we call the DataAdapter object’s Update method.

The following code snippet contains functions that create Command objects that
contain calls to the stored procedures | just described. It also contains a procedure
you can call to create those stored procedures in your database. All that’s left to do to
submit updates using stored procedures is to wire up our new Command objects to
the DataAdapter, which we can do in the SubmitChangesViaStoredProcedures
procedure.

Visual Basic .NET

Private Sub SubmitChangesViaStoredProcedures()
da.UpdateCommand = CreateUpdateViaSPCommand()

da. InsertCommand

da.DeleteCommand

da.Update(tbl)
End Sub

CreatelnsertViaSPCommand()
CreateDeleteViaSPCommand()

Private Function CreateUpdateViaSPCommand() As OleDbCommand
Dim cmd As New OleDbCommand(*'spUpdateDetail™, cn)
cmd .CommandType = CommandType.StoredProcedure

Dim pc As OleDbParameterCollection = cmd.Parameters
pc.Add('Order1D_New'™, OleDbType.Integer, 0, "OrderlID™)
pc.Add("*ProductlID_New'"™, OleDbType.Integer, 0, "ProductlID™)
pc.Add("'Quantity_ New'™, OleDbType.Smalllnt, 0, "Quantity')
pc.Add("'UnitPrice_New', OleDbType.Currency, 0, "UnitPrice')

Dim param As OleDbParameter

param = pc.Add("'OrderlID Orig", OleDbType.Integer, 0, "OrderlID™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add(*'ProductID_Orig™, OleDbType.Integer, 0, _
"ProductlID™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add('Quantity Orig"™, OleDbType.Smalllnt, 0, _
"Quantity™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add("'UnitPrice Orig'", OleDbType.Currency, 0, _
"UnitPrice™)

param.SourceVersion = DataRowVersion.Original

Return cmd
End Function

Private Function CreatelnsertViaSPCommand() As OleDbCommand
Dim cmd As New OleDbCommand(‘'splnsertDetail™, cn)
cmd.CommandType = CommandType.StoredProcedure

Dim pc As OleDbParameterCollection = cmd.Parameters
pc.Add("'OrderiID', OleDbType.Integer, 0, "OrderiD')
pc.Add("'ProductlID”™, OleDbType.Integer, 0, "ProductlID™)
pc.Add("'Quantity’, OleDbType.Smalllnt, O, "Quantity")
pc.Add('UnitPrice’, OleDbType.Currency, 0, "UnitPrice™)

Return cmd
End Function

Private Function CreateDeleteViaSPCommand() As OleDbCommand
Dim cmd As New OleDbCommand(‘'spDeleteDetail™, cn)
cmd .CommandType = CommandType.StoredProcedure

Dim pc As OleDbParameterCollection = cmd.Parameters
Dim param As OleDbParameter
param = pc.Add('OrderID”, OleDbType.Integer, 0, "OrderlID™)

param.SourceVersion = DataRowVersion.Original

param = pc.Add("'ProductlID", OleDbType.Integer, 0, "ProductiD')
param.SourceVersion = DataRowVersion.Original

param = pc.Add('Quantity’, OleDbType.Smalllnt, 0, "Quantity')
param.SourceVersion = DataRowVersion.Original

param = pc.Add('UnitPrice’, OleDbType.Currency, 0, "UnitPrice™)
param.SourceVersion = DataRowVersion.Original

Return cmd
End Function

Private Sub CreateSprocs()
Dim cmd As OleDbCommand = cn.CreateCommand
Dim strSQL As String

strSQL = "CREATE PROCEDURE spUpdateDetail ™ & VvbCrLf & _
" (@OrderID_New int, @ProductlD New int, "™ & vbCrLFf & _
@Quantity New smallint, "™ & VvbCrLTf & _
" @UnitPrice_New money, " & vbCrLf & _
" @OrderID_Orig int, "™ & vbCrLF & _
" @ProductID_Orig int, "™ & vbCrLF & _
@Quantity Orig smallint, ™ & vbCrLF & _
" @UnitPrice Orig money) "™ & vbCrLF & _
“"AS " & VvbCrLf & _
"UPDATE [Order Details] " & vbCrLT & _
" SET OrderID = @OrderID_New, ' & vbCrLf & _
" ProductlID = @ProductID New, "™ & VvbCrLFf & _
" Quantity = @Quantity New, "™ & vbCrLF & _
" UnitPrice @UnitPrice_New " & VDbCrLf & _
WHERE OrderlID @OrderID_Orig AND " & vbCrLT &
" ProductlID = @ProductlD _Orig AND ™ & VDbCrLf & _
" Quantity = @Quantity Orig AND ™ & vbCrLF & _
" UnitPrice = @UnitPrice_Orig"”
cmd.CommandText = strSQL
cmd . ExecuteNonQuery()

strSQL = "CREATE PROCEDURE splnsertDetail " & VvbCrLf & _
(@OrderlID int, @ProductlD Int, " & VbCrLf & _
" @Quantity smallint, @UnitPrice money) " & vbCrLf & _
"AS " & vbCrLf & _
"INSERT INTO [Order Details] "™ & vbCrLF & _
(OrderiID, ProductlD, Quantity, UnitPrice) " & vbCrLf &
" VALUES (@OrderlID, @ProductlD, @Quantity, @UnitPrice)"
cmd.CommandText = strSQL
cmd . ExecuteNonQuery()

strSQL = "CREATE PROCEDURE spDeleteDetail ™ & vbCrLT & _
" (@OrderlID int, @ProductlD int, "™ & VbCrLf & _
" @Quantity smallint, @UnitPrice money) " & vbCrLf & _
"AS " & VvbCrLf & _
"DELETE FROM [Order Details] ™ & vbCrLF & _

WHERE OrderlID = @OrderID AND " & vbCrLf & _
ProductlID = @ProductlD AND "™ & vbCrLF & _
" Quantity = @Quantity AND UnitPrice = @UnitPrice”
cmd.CommandText = strSQL
cmd . ExecuteNonQuery()

End Sub

Visual C# NET

static void SubmitChangesViaStoredProcedures()

{

+

da.UpdateCommand = CreateUpdateViaSPCommand() ;
da. InsertCommand = CreatelnsertViaSPCommand();
da.DeleteCommand = CreateDeleteViaSPCommand();
da.Update(tbl);

static OleDbCommand CreateUpdateViaSPCommand()

{

+

OleDbCommand cmd = new OleDbCommand(*'spUpdateDetail™, cn);
cmd.CommandType = CommandType.StoredProcedure;

OleDbParameterCollection pc = cmd.Parameters;
pc.Add("'OrderID_New™, OleDbType.Integer, 0, "OrderiID™);
pc.Add("'ProductlID _New', OleDbType.Integer, 0, "ProductlD");
pc.Add("'Quantity New'™, OleDbType.Smalllnt, 0, "Quantity');
pc.Add('UnitPrice_New'™, OleDbType.Currency, 0, "UnitPrice™);

OleDbParameter param;

param = pc.Add(*'OrderID _Orig"™, OleDbType.Integer, 0, "OrderlID");
param.SourceVersion = DataRowVersion.Original;

param = pc.Add(*'ProductlID _Orig', OleDbType.Integer, 0, "ProductlD");
param.SourceVersion = DataRowVersion.Original;

param = pc.Add(*'Quantity _Orig"™, OleDbType.Smalllnt, O, "Quantity™);
param.SourceVersion = DataRowVersion.Original;

param = pc.Add('UnitPrice Orig', OleDbType.Currency, 0, "UnitPrice™);
param.SourceVersion = DataRowVersion.Original;

return cmd;

static OleDbCommand CreatelnsertViaSPCommand()

{

OleDbCommand cmd = new OleDbCommand(*'splnsertDetail™, cn);
cmd.CommandType = CommandType.StoredProcedure;

OleDbParameterCollection pc = cmd.Parameters;
pc.Add("'OrderiID", OleDbType.Integer, 0, "OrderlD");
pc.Add("'ProductlID”™, OleDbType.lInteger, 0, "ProductiD™);
pc.Add("'Quantity’, OleDbType.Smalllnt, O, "Quantity™);
pc.Add('UnitPrice’™, OleDbType.Currency, 0, "UnitPrice™);

return cmd;

}

static OleDbCommand CreateDeleteViaSPCommand()

{
OleDbCommand cmd = new OleDbCommand(*'spDeleteDetail™, cn);
cmd .CommandType = CommandType.StoredProcedure;

OleDbParameterCollection pc = cmd.Parameters;

OleDbParameter param;

param = pc.Add(*'OrderiID”, OleDbType.Integer, 0, "OrderiID™);
param.SourceVersion = DataRowVersion.Original;

param = pc.Add(*'ProductID", OleDbType.Integer, 0, "ProductlD");
param.SourceVersion = DataRowVersion.Original;

param = pc.Add('Quantity’, OleDbType.Smalllnt, 0, "Quantity');
param.SourceVersion = DataRowVersion.Original;

param = pc.Add('UnitPrice"™, OleDbType.Currency, 0, "UnitPrice"™);
param.SourceVersion = DataRowVersion.Original;

return cmd;

+

static void CreateSprocs()

{
OleDbCommand cmd = cn.CreateCommand();
string strSQL;

strSQL = "CREATE PROCEDURE spUpdateDetail \n\r" +

(@OrderID_New int, @ProductlD New int, \n\r' +
@Quantity New smallint, @UnitPrice_New money, \n\r" +
" @OrderID_Orig int, @ProductlD Orig int, \n\r" +

" @Quantity Orig smallint, @UnitPrice_Orig money) \n\r"
"AS \n\r" +

"UPDATE [Order Details] \n\r" +

" SET OrderID = @OrderID_New, \n\r" +

" ProductlID = @ProductID_New, \n\r" +

Quantity = @Quantity New, \n\r" +

UnitPrice @UnitPrice New \n\r' +

" WHERE OrderID = @OrderID_Orig AND \n\r" +

" ProductlID = @ProductlD_Orig AND \n\r" +

Quantity = @Quantity Orig AND \n\r' +

UnitPrice = @UnitPrice _Orig";

cmd.CommandText = strSQL;

cmd . ExecuteNonQuery();

strSQL = "CREATE PROCEDURE splnsertDetail \n\r" +
" (@OrderlID int, @ProductlD Int, \n\r" +
" @Quantity smallint, @UnitPrice money) \n\r" +
"AS \n\r" +
"INSERT INTO [Order Details] \n\r' +

(OrderiID, ProductlD, Quantity, UnitPrice) \n\r" +
VALUES (@OrderlID, @ProductlD, @Quantity, @UnitPrice)";
cmd.CommandText = strSQL;
cmd . ExecuteNonQuery();

strSQL = "CREATE PROCEDURE spDeleteDetail \n\r" +

" (@OrderlID int, @ProductlD int, \n\r" +

" @Quantity smallint, @UnitPrice money) \n\r' +

"AS \n\r" +

"DELETE FROM [Order Details] \n\r' +

" WHERE OrderID = @OrderID AND \n\r" +

" ProductlID = @ProductlD AND \n\r' +

' Quantity = @Quantity AND UnitPrice = @UnitPrice";
cmd.CommandText = strSQL;
cmd . ExecuteNonQuery();

}
Supplying Your Own Updating Logic

Now let’s look at the benefits and drawbacks of supplying your own updating
logic in code.

Benefits

The two biggest benefits of supplying your own updating logic are control and
performance. The ADO.NET DataAdapter offers you more control over your
updating logic than any previous Microsoft data access technology. You're no longer
restricted to submitting updates directly against tables; you can finally leverage your
stored procedures in a RAD way.

Plus, because you’re not relying on the data access technology to determine the
origin of your data, you can treat any result set as updateable. With the ADO cursor
engine, if the cursor engine cannot gather the metadata necessary to submit changes
back to your database, there is no way for you to supply that information
programmatically. With ADO.NET, you can fill your DataSet with the results of a
stored procedure call, a query against a temporary table, or the union of multiple
queries—or fill it in any other way you see fit—and still be able to submit changes to
your database.

Supplying updating logic in your code improves the performance of your
application. The code snippet that used the ADO cursor engine to submit updates
contained fewer lines of code, but it required the ADO cursor engine to query the
database for the source table name, source column names, and primary key
information for the source table. Querying database system tables for metadata and
then using that metadata to generate updating logic takes more time than simply
loading it from local code.

Drawbacks

The drawbacks of supplying your own updating logic mirror the benefits of the
ADO cursor engine’s approach. First, it takes a lot more code to supply your own
updating logic. Take a quick peek back, and compare how much code it took to
submit updates using an ADO.NET DataAdapter with the ADO cursor engine’s

approach. Writing that code is time consuming and rather tedious.

The other drawback is that many developers are not comfortable writing their
own updating logic. They would rather not have to ponder such questions as: Do |
need to delimit the table name in the query? What type of parameter markers should
I use? Which columns should appear in the WHERE clause of the CommandText for
the UpdateCommand and DeleteCommand? What is the appropriate setting for the
OleDbType property for a parameter that contains a date/time value?

Thankfully, there are more RAD ways to generate your updating logic, as I'll
explain in the upcoming sections.

