
Manually Configuring Your DataAdapter 
Objects 

The DataAdapter object exposes four properties that contain Command objects. 
You’ve already learned that the SelectCommand property contains the Command 
that the DataAdapter uses to fill your DataTable. The other three properties—
UpdateCommand, InsertCommand, and DeleteCommand—contain the Command 
objects that the DataAdapter uses to submit pending changes. 

This architecture represents a major change from the ADO object model. There 
is no magical “black box” technology involved. You control how the DataAdapter 
submits pending changes because you supply the Command objects that the 
DataAdapter uses. 

The DataAdapter object’s Update method is very flexible. You can supply a 
DataSet, a DataSet and a table name, a DataTable, or an array of DataRow objects. 
Regardless of how you call the DataAdapter object’s Update method, the 
DataAdapter will attempt to submit the pending changes through the appropriate 
Command. All the work we performed earlier in the SubmitChangesByHand 
procedure can be accomplished using a single call to the DataAdapter object’s 
Update method. 

Introducing Bound Parameters 
The SubmitChangesByHand procedure that we created was not terribly 

complex. The procedure also didn’t do much work. Instead, it delegated the nasty 
work to one of three functions: SubmitUpdate, SubmitInsert, or SubmitDelete. These 
functions populate the values for the parameters in the appropriate query based on 
the contents of the modified row. 

We’ll use the same parameterized queries to submit pending changes using a 
DataAdapter. 

UPDATE [Order Details]  
    SET OrderID = ?, ProductID = ?, Quantity = ?, UnitPrice = ?  
    WHERE OrderID = ?  AND ProductID = ? AND  
          Quantity = ? AND UnitPrice = ? 
 
INSERT INTO [Order Details] (OrderID, ProductID, Quantity, UnitPrice)
    VALUES (?, ?, ?, ?) 
 
DELETE FROM [Order Details] 
    WHERE OrderID = ? AND ProductID = ? AND  
          Quantity = ? AND UnitPrice = ? 

However, when we add Parameter objects to the DataAdapter object’s 
Command objects, we’ll use two properties of the ADO.NET Parameter object that 
are designed specifically for updates using the DataAdapter: SourceColumn and 
SourceVersion. 

These properties basically bind a Parameter to a DataColumn in your 
DataTable. The DataAdapter uses these properties to determine how to populate the 
Parameter object’s Value property before executing the query, similar to how we 

� �



accomplished this task in the SubmitUpdate, SubmitInsert, and SubmitDelete 
functions. Figure 10-2 better illustrates this behavior. 

 
Figure 10-2 

Binding Parameter objects to DataColumn objects. 

The following code snippet creates our parameterized Command objects but sets 
the SourceColumn and SourceVersion properties of the Parameter objects. The 
default value for the SourceVersion property is DataRowVersion.Current, so we 
need to set the property only if we want to bind the Parameter objects to the original 
values in the desired column. 

Visual Basic .NET 
Private Function CreateDataAdapterUpdateCommand() As OleDbCommand 
    Dim strSQL As String 
    strSQL = "UPDATE [Order Details] " & _ 
             "    SET OrderID = ?, ProductID = ?, " & _ 
             "        Quantity = ?, UnitPrice = ? " & _ 
             "    WHERE OrderID = ?  AND ProductID = ? AND " & _ 
             "          Quantity = ? AND UnitPrice = ?" 
    Dim cmd As New OleDbCommand(strSQL, cn) 
 
    Dim pc As OleDbParameterCollection = cmd.Parameters 
    pc.Add("OrderID_New", OleDbType.Integer, 0, "OrderID") 
    pc.Add("ProductID_New", OleDbType.Integer, 0, "ProductID") 
    pc.Add("Quantity_New", OleDbType.SmallInt, 0, "Quantity") 
    pc.Add("UnitPrice_New", OleDbType.Currency, 0, "UnitPrice") 
 
    Dim param As OleDbParameter 
    param = pc.Add("OrderID_Orig", OleDbType.Integer, 0, "OrderID")
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("ProductID_Orig", OleDbType.Integer, 0, _ 
                   "ProductID") 
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("Quantity_Orig", OleDbType.SmallInt, 0, _ 
                   "Quantity") 
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("UnitPrice_Orig", OleDbType.Currency, 0, _ 
                   "UnitPrice") 
    param.SourceVersion = DataRowVersion.Original 
 



    Return cmd 
End Function 
 
Private Function CreateDataAdapterInsertCommand() As OleDbCommand 
    Dim strSQL As String 
    strSQL = "INSERT INTO [Order Details] " & _ 
             "   (OrderID, ProductID, Quantity, UnitPrice) " & _ 
             "   VALUES (?, ?, ?, ?)" 
    Dim cmd As New OleDbCommand(strSQL, cn) 
 
    Dim pc As OleDbParameterCollection = cmd.Parameters 
    pc.Add("OrderID", OleDbType.Integer, 0, "OrderID") 
    pc.Add("ProductID", OleDbType.Integer, 0, "ProductID") 
    pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity") 
    pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice") 
 
    Return cmd 
End Function 
 
Private Function CreateDataAdapterDeleteCommand() As OleDbCommand 
    Dim strSQL As String 
    strSQL = "DELETE FROM [Order Details] " & _ 
             "    WHERE OrderID = ? AND ProductID = ? AND " & _ 
             "          Quantity = ? AND UnitPrice = ?" 
    Dim cmd As New OleDbCommand(strSQL, cn) 
 
    Dim pc As OleDbParameterCollection = cmd.Parameters 
    Dim param As OleDbParameter 
    pc.Add("OrderID", OleDbType.Integer, 0, "OrderID") 
    param.SourceVersion = DataRowVersion.Original 
    pc.Add("ProductID", OleDbType.Integer, 0, "ProductID") 
    param.SourceVersion = DataRowVersion.Original 
    pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity") 
    param.SourceVersion = DataRowVersion.Original 
    pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice") 
    param.SourceVersion = DataRowVersion.Original 
 
    Return cmd 
End Function 

Visual C# .NET 
static OleDbCommand CreateDataAdapterUpdateCommand() 
{ 
    string strSQL; 
    strSQL = "UPDATE [Order Details] " & _ 
             "    SET OrderID = ?, ProductID = ?, " + 
             "        Quantity = ?, UnitPrice = ? " + 
             "    WHERE OrderID = ? AND ProductID = ? AND " + 
             "          Quantity = ? AND UnitPrice = ?"; 
    OleDbCommand cmd = new OleDbCommand(strSQL, cn); 



 
    OleDbParameterCollection pc = cmd.Parameters; 
    pc.Add("OrderID_New", OleDbType.Integer, 0, "OrderID"); 
    pc.Add("ProductID_New", OleDbType.Integer, 0, "ProductID"); 
    pc.Add("Quantity_New", OleDbType.SmallInt, 0, "Quantity"); 
    pc.Add("UnitPrice_New", OleDbType.Currency, 0, "UnitPrice"); 
 
    OleDbParameter param; 
    param = pc.Add("OrderID_Orig", OleDbType.Integer, 0, "OrderID");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("ProductID_Orig", OleDbType.Integer, 0,  
                   "ProductID"); 
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("Quantity_Orig", OleDbType.SmallInt, 0,  
                   "Quantity"); 
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("UnitPrice_Orig", OleDbType.Currency, 0,  
                   "UnitPrice"); 
    param.SourceVersion = DataRowVersion.Original; 
 
    return cmd; 
}     
 
static OleDbCommand CreateDataAdapterInsertCommand() 
{ 
    string strSQL; 
    strSQL = "INSERT INTO [Order Details] " + 
             "    (OrderID, ProductID, Quantity, UnitPrice) " + 
             "    VALUES (?, ?, ?, ?)"; 
    OleDbCommand cmd = new OleDbCommand(strSQL, cn); 
 
    OleDbParameterCollection pc = cmd.Parameters; 
    pc.Add("OrderID", OleDbType.Integer, 0, "OrderID"); 
    pc.Add("ProductID", OleDbType.Integer, 0, "ProductID"); 
    pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity"); 
    pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice"); 
 
    return cmd; 
}     
 
static OleDbCommand CreateDataAdapterDeleteCommand() 
{ 
    string strSQL; 
    strSQL = "DELETE FROM [Order Details] " + 
             "    WHERE OrderID = ? AND ProductID = ? AND " + 
             "          Quantity = ? AND UnitPrice = ?"; 
    OleDbCommand cmd = new OleDbCommand(strSQL, cn); 
 
    OleDbParameter param; 
    OleDbParameterCollection pc = cmd.Parameters; 
    param = pc.Add("OrderID", OleDbType.Integer, 0, "OrderID"); 



    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("ProductID", OleDbType.Integer, 0, "ProductID");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice");
    param.SourceVersion = DataRowVersion.Original; 
 
    return cmd; 
}     

We can now replace the SubmitChangesByHand, SubmitUpdate, SubmitInsert, 
and SubmitDelete procedures with the following code: 

Visual Basic .NET 
Private Sub SubmitChangesViaDataAdapter() 
    da.UpdateCommand = CreateDataAdapterUpdateCommand() 
    da.InsertCommand = CreateDataAdapterInsertCommand() 
    da.DeleteCommand = CreateDataAdapterDeleteCommand() 
    da.Update(tbl) 
End Sub 

Visual C# .NET 
static void SubmitChangesViaDataAdapter() 
{ 
    da.UpdateCommand = CreateDataAdapterUpdateCommand(); 
    da.InsertCommand = CreateDataAdapterInsertCommand(); 
    da.DeleteCommand = CreateDataAdapterDeleteCommand(); 
    da.Update(tbl); 
} 

Using Stored Procedures to Submit Updates 
A common complaint of developers who used ADO to retrieve data from their 

databases was that they couldn’t use the Recordset object’s UpdateBatch method to 
submit updates using stored procedures. 

Earlier, I mentioned that the DataAdapter lets you define your own updating 
logic. The previous code snippets showed how you can build your own Command 
objects that the DataAdapter can then use to submit pending changes. We can use 
similar code to submit updates using stored procedures. 

First we need to define stored procedures in the Northwind database that can 
modify, insert, and delete rows from the Order Details table. You can paste and then 
execute the following code in SQL Query Analyzer to create the stored procedures 
that we’re going to call in our code. If you don’t have access to SQL Query Analyzer 
because you have only MSDE installed, you can call a procedure named 
CreateSprocs (which appears in a later code snippet) to create the desired stored 
procedures. 



USE Northwind 
 
GO 
 
CREATE PROCEDURE spUpdateDetail 
    (@OrderID_New int, @ProductID_New int,  
     @Quantity_New smallint, @UnitPrice_New money,  
     @OrderID_Orig int, @ProductID_Orig int,  
     @Quantity_Orig smallint, @UnitPrice_Orig money)  
AS  
UPDATE [Order Details] 
    SET OrderID = @OrderID_New, ProductID = @ProductID_New,  
        Quantity = @Quantity_New, UnitPrice = @UnitPrice_New  
    WHERE OrderID = @OrderID_Orig AND ProductID = @ProductID_Orig AND
          Quantity = @Quantity_Orig AND UnitPrice = @UnitPrice_Orig
 
GO 
 
CREATE PROCEDURE spInsertDetail  
    (@OrderID int, @ProductID int,  
     @Quantity smallint, @UnitPrice money)  
AS  
INSERT INTO [Order Details]  
    (OrderID, ProductID, Quantity, UnitPrice) 
    VALUES (@OrderID, @ProductID, @Quantity, @UnitPrice) 
 
GO 
 
CREATE PROCEDURE spDeleteDetail 
    (@OrderID int, @ProductID int,  
     @Quantity smallint, @UnitPrice money)  
AS  
DELETE FROM [Order Details]  
    WHERE OrderID = @OrderID AND ProductID = @ProductID AND  
          Quantity = @Quantity AND UnitPrice = @UnitPrice 

Now that we have stored procedures that we can call to submit changes to the 
Order Details table, we can write Command objects to call those stored procedures 
automatically when we call the DataAdapter object’s Update method. 

The following code snippet contains functions that create Command objects that 
contain calls to the stored procedures I just described. It also contains a procedure 
you can call to create those stored procedures in your database. All that’s left to do to 
submit updates using stored procedures is to wire up our new Command objects to 
the DataAdapter, which we can do in the SubmitChangesViaStoredProcedures 
procedure. 

Visual Basic .NET 
Private Sub SubmitChangesViaStoredProcedures() 
    da.UpdateCommand = CreateUpdateViaSPCommand() 



    da.InsertCommand = CreateInsertViaSPCommand() 
    da.DeleteCommand = CreateDeleteViaSPCommand() 
    da.Update(tbl) 
End Sub 
 
Private Function CreateUpdateViaSPCommand() As OleDbCommand 
    Dim cmd As New OleDbCommand("spUpdateDetail", cn) 
    cmd.CommandType = CommandType.StoredProcedure 
 
    Dim pc As OleDbParameterCollection = cmd.Parameters 
    pc.Add("OrderID_New", OleDbType.Integer, 0, "OrderID") 
    pc.Add("ProductID_New", OleDbType.Integer, 0, "ProductID") 
    pc.Add("Quantity_New", OleDbType.SmallInt, 0, "Quantity") 
    pc.Add("UnitPrice_New", OleDbType.Currency, 0, "UnitPrice") 
 
    Dim param As OleDbParameter 
    param = pc.Add("OrderID_Orig", OleDbType.Integer, 0, "OrderID")
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("ProductID_Orig", OleDbType.Integer, 0, _ 
                   "ProductID") 
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("Quantity_Orig", OleDbType.SmallInt, 0, _ 
                   "Quantity") 
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("UnitPrice_Orig", OleDbType.Currency, 0, _ 
                   "UnitPrice") 
    param.SourceVersion = DataRowVersion.Original 
 
    Return cmd 
End Function 
 
Private Function CreateInsertViaSPCommand() As OleDbCommand 
    Dim cmd As New OleDbCommand("spInsertDetail", cn) 
    cmd.CommandType = CommandType.StoredProcedure 
 
    Dim pc As OleDbParameterCollection = cmd.Parameters 
    pc.Add("OrderID", OleDbType.Integer, 0, "OrderID") 
    pc.Add("ProductID", OleDbType.Integer, 0, "ProductID") 
    pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity") 
    pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice") 
 
    Return cmd 
End Function 
 
Private Function CreateDeleteViaSPCommand() As OleDbCommand 
    Dim cmd As New OleDbCommand("spDeleteDetail", cn) 
    cmd.CommandType = CommandType.StoredProcedure 
 
    Dim pc As OleDbParameterCollection = cmd.Parameters 
    Dim param As OleDbParameter 
    param = pc.Add("OrderID", OleDbType.Integer, 0, "OrderID") 



    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("ProductID", OleDbType.Integer, 0, "ProductID")
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity") 
    param.SourceVersion = DataRowVersion.Original 
    param = pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice")
    param.SourceVersion = DataRowVersion.Original 
 
    Return cmd 
End Function 
 
Private Sub CreateSprocs() 
    Dim cmd As OleDbCommand = cn.CreateCommand 
    Dim strSQL As String 
 
    strSQL = "CREATE PROCEDURE spUpdateDetail " & vbCrLf & _ 
             "    (@OrderID_New int, @ProductID_New int, " & vbCrLf & _
             "     @Quantity_New smallint, " & vbCrLf & _ 
             "     @UnitPrice_New money, " & vbCrLf & _ 
             "     @OrderID_Orig int, " & vbCrLf & _ 
             "     @ProductID_Orig int, " & vbCrLf & _ 
             "     @Quantity_Orig smallint, " & vbCrLf & _ 
             "     @UnitPrice_Orig money) " & vbCrLf & _ 
             "AS " & vbCrLf & _ 
             "UPDATE [Order Details] " & vbCrLf & _ 
             "    SET OrderID = @OrderID_New, " & vbCrLf & _ 
             "        ProductID = @ProductID_New, " & vbCrLf & _ 
             "        Quantity = @Quantity_New, " & vbCrLf & _ 
             "        UnitPrice = @UnitPrice_New " & vbCrLf & _ 
             "    WHERE OrderID = @OrderID_Orig AND " & vbCrLf &_ 
             "          ProductID = @ProductID_Orig AND " & vbCrLf & _
             "          Quantity = @Quantity_Orig AND " & vbCrLf & _
             "          UnitPrice = @UnitPrice_Orig" 
    cmd.CommandText = strSQL 
    cmd.ExecuteNonQuery() 
 
    strSQL = "CREATE PROCEDURE spInsertDetail " & vbCrLf & _ 
             "    (@OrderID int, @ProductID int, " & vbCrLf & _ 
             "     @Quantity smallint, @UnitPrice money) " & vbCrLf & _
             "AS " & vbCrLf & _ 
             "INSERT INTO [Order Details] " & vbCrLf & _ 
             "    (OrderID, ProductID, Quantity, UnitPrice) " & vbCrLf & _
             "    VALUES (@OrderID, @ProductID, @Quantity, @UnitPrice)"
    cmd.CommandText = strSQL 
    cmd.ExecuteNonQuery() 
 
    strSQL = "CREATE PROCEDURE spDeleteDetail " & vbCrLf & _ 
             "    (@OrderID int, @ProductID int, " & vbCrLf & _ 
             "     @Quantity smallint, @UnitPrice money) " & vbCrLf & _
             "AS " & vbCrLf & _ 
             "DELETE FROM [Order Details] " & vbCrLf & _ 



             "    WHERE OrderID = @OrderID AND " & vbCrLf & _ 
             "          ProductID = @ProductID AND " & vbCrLf & _ 
             "          Quantity = @Quantity AND UnitPrice = @UnitPrice"
    cmd.CommandText = strSQL 
    cmd.ExecuteNonQuery() 
End Sub 

Visual C# .NET 
static void SubmitChangesViaStoredProcedures() 
{ 
    da.UpdateCommand = CreateUpdateViaSPCommand(); 
    da.InsertCommand = CreateInsertViaSPCommand(); 
    da.DeleteCommand = CreateDeleteViaSPCommand(); 
    da.Update(tbl); 
} 
 
static OleDbCommand CreateUpdateViaSPCommand() 
{ 
    OleDbCommand cmd = new OleDbCommand("spUpdateDetail", cn); 
    cmd.CommandType = CommandType.StoredProcedure; 
 
    OleDbParameterCollection pc = cmd.Parameters; 
    pc.Add("OrderID_New", OleDbType.Integer, 0, "OrderID"); 
    pc.Add("ProductID_New", OleDbType.Integer, 0, "ProductID"); 
    pc.Add("Quantity_New", OleDbType.SmallInt, 0, "Quantity"); 
    pc.Add("UnitPrice_New", OleDbType.Currency, 0, "UnitPrice"); 
 
    OleDbParameter param; 
    param = pc.Add("OrderID_Orig", OleDbType.Integer, 0, "OrderID");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("ProductID_Orig", OleDbType.Integer, 0, "ProductID");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("Quantity_Orig", OleDbType.SmallInt, 0, "Quantity");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("UnitPrice_Orig", OleDbType.Currency, 0, "UnitPrice");
    param.SourceVersion = DataRowVersion.Original; 
 
    return cmd; 
}     
 
static OleDbCommand CreateInsertViaSPCommand() 
{ 
    OleDbCommand cmd = new OleDbCommand("spInsertDetail", cn); 
    cmd.CommandType = CommandType.StoredProcedure; 
 
    OleDbParameterCollection pc = cmd.Parameters; 
    pc.Add("OrderID", OleDbType.Integer, 0, "OrderID"); 
    pc.Add("ProductID", OleDbType.Integer, 0, "ProductID"); 
    pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity"); 
    pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice"); 



 
    return cmd; 
}     
 
static OleDbCommand CreateDeleteViaSPCommand() 
{ 
    OleDbCommand cmd = new OleDbCommand("spDeleteDetail", cn); 
    cmd.CommandType = CommandType.StoredProcedure; 
 
    OleDbParameterCollection pc = cmd.Parameters; 
    OleDbParameter param; 
    param = pc.Add("OrderID", OleDbType.Integer, 0, "OrderID"); 
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("ProductID", OleDbType.Integer, 0, "ProductID");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("Quantity", OleDbType.SmallInt, 0, "Quantity");
    param.SourceVersion = DataRowVersion.Original; 
    param = pc.Add("UnitPrice", OleDbType.Currency, 0, "UnitPrice");
    param.SourceVersion = DataRowVersion.Original; 
 
    return cmd; 
}     
 
static void CreateSprocs() 
{ 
    OleDbCommand cmd = cn.CreateCommand(); 
    string strSQL; 
 
    strSQL = "CREATE PROCEDURE spUpdateDetail \n\r" +  
             "    (@OrderID_New int, @ProductID_New int, \n\r" +  
             "     @Quantity_New smallint, @UnitPrice_New money, \n\r" + 
             "     @OrderID_Orig int, @ProductID_Orig int, \n\r" + 
             "     @Quantity_Orig smallint, @UnitPrice_Orig money) \n\r" + 
             "AS \n\r" +  
             "UPDATE [Order Details] \n\r" +  
             "    SET OrderID = @OrderID_New, \n\r" + 
             "        ProductID = @ProductID_New, \n\r" +  
             "        Quantity = @Quantity_New, \n\r" +  
             "        UnitPrice = @UnitPrice_New \n\r" +  
             "    WHERE OrderID = @OrderID_Orig AND \n\r" + 
             "          ProductID = @ProductID_Orig AND \n\r" +  
             "          Quantity = @Quantity_Orig AND \n\r" + 
             "          UnitPrice = @UnitPrice_Orig"; 
    cmd.CommandText = strSQL; 
    cmd.ExecuteNonQuery(); 
 
    strSQL = "CREATE PROCEDURE spInsertDetail \n\r" +  
             "    (@OrderID int, @ProductID int, \n\r" +  
             "     @Quantity smallint, @UnitPrice money) \n\r" +  
             "AS \n\r" +  
             "INSERT INTO [Order Details] \n\r" +  



             "    (OrderID, ProductID, Quantity, UnitPrice) \n\r" + 
             "    VALUES (@OrderID, @ProductID, @Quantity, @UnitPrice)";
    cmd.CommandText = strSQL; 
    cmd.ExecuteNonQuery(); 
 
    strSQL = "CREATE PROCEDURE spDeleteDetail \n\r" +  
             "    (@OrderID int, @ProductID int, \n\r" +  
             "     @Quantity smallint, @UnitPrice money) \n\r" +  
             "AS \n\r" +  
             "DELETE FROM [Order Details] \n\r" +  
             "    WHERE OrderID = @OrderID AND \n\r" + 
             "          ProductID = @ProductID AND \n\r" +  
             "          Quantity = @Quantity AND UnitPrice = @UnitPrice";
    cmd.CommandText = strSQL; 
    cmd.ExecuteNonQuery(); 
} 

Supplying Your Own Updating Logic 
Now let’s look at the benefits and drawbacks of supplying your own updating 

logic in code. 

Benefits 
The two biggest benefits of supplying your own updating logic are control and 

performance. The ADO.NET DataAdapter offers you more control over your 
updating logic than any previous Microsoft data access technology. You’re no longer 
restricted to submitting updates directly against tables; you can finally leverage your 
stored procedures in a RAD way. 

Plus, because you’re not relying on the data access technology to determine the 
origin of your data, you can treat any result set as updateable. With the ADO cursor 
engine, if the cursor engine cannot gather the metadata necessary to submit changes 
back to your database, there is no way for you to supply that information 
programmatically. With ADO.NET, you can fill your DataSet with the results of a 
stored procedure call, a query against a temporary table, or the union of multiple 
queries—or fill it in any other way you see fit—and still be able to submit changes to 
your database. 

Supplying updating logic in your code improves the performance of your 
application. The code snippet that used the ADO cursor engine to submit updates 
contained fewer lines of code, but it required the ADO cursor engine to query the 
database for the source table name, source column names, and primary key 
information for the source table. Querying database system tables for metadata and 
then using that metadata to generate updating logic takes more time than simply 
loading it from local code. 

Drawbacks 
The drawbacks of supplying your own updating logic mirror the benefits of the 

ADO cursor engine’s approach. First, it takes a lot more code to supply your own 
updating logic. Take a quick peek back, and compare how much code it took to 
submit updates using an ADO.NET DataAdapter with the ADO cursor engine’s 



approach. Writing that code is time consuming and rather tedious. 

The other drawback is that many developers are not comfortable writing their 
own updating logic. They would rather not have to ponder such questions as: Do I 
need to delimit the table name in the query? What type of parameter markers should 
I use? Which columns should appear in the WHERE clause of the CommandText for 
the UpdateCommand and DeleteCommand? What is the appropriate setting for the 
OleDbType property for a parameter that contains a date/time value? 

Thankfully, there are more RAD ways to generate your updating logic, as I’ll 
explain in the upcoming sections. 

� �


