0 © THE CODE /////) /- |

The Visual Studio .NET Developer's Homepage

—

All Topics, C#, .NET >> C# Programming >> Generics Beginner
http://www.codeproject.com/csharp/Generics.asp CHt
Windows, .NET (.NET 2.0)
H Win32, VS
Generics win

By Aagamuri Sridhar Posted 26 Feb 2004

. 18,101 views
An article on generics, gives clear picture about generics with examples

18 members have rated this article. Result: !!!LI_]

Popularity: 4.16. Rating: 3.31 out of 5.

Parametric Polymorphism is a well-established programming language feature. Generics offers this
feature to C#.

The best way to understand generics is to study some C# code that would benefit from generics. The
code stated below is about a simple Stack class with two methods: Push () and Pop (). First,
without using generics example you can get a clear idea about two issues: a) Boxing and unboxing
overhead and b) No strong type information at compile type. After that the same Stack class with
the use of generics explains how these two issues are solved.

public class Stack

{
object[] store;
int size;
public void Push(object x) {...}
public object Pop({.-..}
}

You can push a value of any type onto a stack. To retrieve, the result of the Pop method must be
explicitly cast back. For example if an integer passed to the Push method, it is automatically boxed.
While retrieving, it must be unboxed with an explicit type cast.

Stack stack = new Stack();
stack.Push(3);
int 1 = (int)stack.Pop(); //unboxing with explicit int casting

Such boxing and unboxing operations add performance overhead since they involve dynamic
memory allocations and run-time type checks.

Another issue with the Stack class: It is not possible to enforce the kind of data placed on a stack.
For example, a string can be pushed on a stack and then accidentally cast to the wrong type like
integer after it is retrieved:

Stack stack = new Stack();
stack.Push('SomeName™); //pushing the string
int I = (int)stack.Pop(); //run-time exception will be thrown at this point

The above code is technically correct and you will not get any compile time error. The problem does

http://www.codeproject.com/csharp/Generics.asp

not become visible until the code is executed; at that point an Inval idCastException is thrown.

In C# with generics, you declare class Stack <T> {...}, where T is the type parameter. Within
class Stack <T>you can use T as if it were a type. You can create a Stack as Integer by declaring
Stack <int> or Stack as Customer object by declaring Stack<Customer>. Simply your type
arguments get substituted for the type parameter. All of the Ts become ints or Customers, you don't
have to downcast, and there is strong type checking everywhere.

public class Stack<T>

{ // items are of type T, which is kown when you create the object
T[] items;
int count;
public void Push(T item) {---}
//type of method pop will be decided when you creat the object
public T Pop(Q)
{---}

¥
In the following example, int is given as the type argument for T:

Stack<int> stack = new Stack<int>();
stack.Push(3);
int i = stack_.Pop(Q);

The Stack<int> type is called a constructed type. In the Stack<int> type, every occurrence of T is
replaced with the type argument int. The Push and Pop methods of a Stack<int> operate on int
values, making it a compile-time error to push values of other types onto the stack, and eliminating
the need to explicitly cast values back to their original type when they are retrieved.

You can use parameterization not only for classes but also for interfaces, structs, methods and
delegates.

//For Interfaces
interface IComparable <T>

//for structs
struct HashBucket <K,D>

//for methods
static void Reverse <T> (T[] arr)

//for delegates
delegate void Action <T> (T arg)

When you compile Stack<T>, or any other generic type, it compiles down to IL and metadata just
like any normal type. The IL and metadata contains additional information that knows there's a type
parameter. This means you have the type information at compile time.

Implementation of parametric polymorphism can be done in two ways 1. Code Specialization:
Specializing the code for each instantiation 2. Code sharing: Generating common code for all
instantiations. The C# implementation of generics uses both code specialization and code sharing as
explained below.

At runtime, when your application makes its first reference to Stack <int>, the system looks to see if
anyone already asked for Stack <int>. If not, it feeds into the JIT the IL and metadata for Stack
<T> and the type argument int. The .NET Common Language Runtime creates a specialized copy of
the native code for each generic type instantiation with a value type, but shares a single copy of the
native code for all reference types (since, at the native code level, references are just pointers with
the same representation).

In other words, for instantiations those are value types: such as Stack <int>, Stack <long>,

Stack<double>, Stack<float> CLR creates a unique copy of the executable native code. So
Stack<int> gets its own code. Stack<long> gets its own code. Stack <float> gets its own code.
Stack <int> uses 32 bits and Stack <long> uses 64 bits. While reference types, Stack <dog> is
different from Stack <cat>, but they actually share all the same method code and both are 32-bit
pointers. This code sharing avoids code bloat and gives better performance.

To support generics, Microsoft did some changes to CLR, metadata, type-loader,language compilers,
IL instructions and so on for the next release of Visual Studio.NET (codenamed Whidbey).

Generics can make the C# code more efficient, type-safe and maintainable.

® Efficiency: Following points states that how performance is boosted.
1. Instantiations of parameterized classes are loaded dynamically and the code for their
methods is generated on demand [Just in Time].
2. Where ever possible, compiled code and data representations are shared between
different instantiations.
3. Due to type specialization, the implementation never needs to box values of primitive
types.
® Safety: Strong type checking at compile time, hence more bugs caught at compile time itself.
® Maintainability: Maintainability is achieved with fewer explicit conversions between data types
and code with generics improves clarity and expressivity.

Generics gives better performance, type safety and clarity to the C# programs. Generics will increase
program reliability by adding strong type checking. Learning how to use generics is straightforward,
hopefully this article has inspired you to look deeper into how you can use them.

Sridhar Aagamuri

MCSD.NET

Wipro Technologies
sridhar.aagamuri@wipro.com

Click here to view Aagamuri Sridhar's online profile.

0 © THE CODE /'///) /- |

The Visual Studio .NET Developer's Homepage

o

Iﬁ 14 comments have been posted for this article. Visit

http://www.codeproject.com/csharp/Generics.asp to post and view comments on
this article.

All Topics, C#, .NET >> C# Programming >> Generics Article content copyright Aagamuri Sridhar, 2004
Updated: 26 Feb 2004 everything else Copyright © CodeProject, 1999-2005.

mailto:sridhar.aagamuri@wipro.com
http://www.codeproject.com/csharp/Generics.asp

