
Using ADO.NET Command Objects to
Submit Updates

As you now know, the ADO cursor engine builds parameterized queries to
submit updates. You can use what you learned in Chapter 4 to build equivalent
parameterized queries in ADO.NET. Later in the chapter, you’ll learn how to use
these parameterized Command objects to submit the changes stored in an ADO.NET
DataSet to your database.

Our ADO.NET Command objects will not be quite as dynamic as their ADO
counterparts. To simplify the process, we’ll build one Command to handle updates,
one to handle insertions, and one to handle deletions. They’ll be based on the
following parameterized queries:

UPDATE [Order Details]
 SET OrderID = ?, ProductID = ?, Quantity = ?, UnitPrice = ?
 WHERE OrderID = ? AND ProductID = ? AND
 Quantity = ? AND UnitPrice = ?

INSERT INTO [Order Details] (OrderID, ProductID, Quantity, UnitPrice)
 VALUES (?, ?, ?, ?)

DELETE FROM [Order Details]
 WHERE OrderID = ? AND ProductID = ? AND
 Quantity = ? AND UnitPrice = ?

The following code snippet builds our three parameterized Command objects. In
each case, the code assumes that there is an externally defined OleDbConnection
object called cn.

Visual Basic .NET
Private Function CreateUpdateCommand() As OleDbCommand
 Dim strSQL As String
 strSQL = "UPDATE [Order Details] " & _
 " SET OrderID = ?, ProductID = ?, " & _
 " Quantity = ?, UnitPrice = ? " & _
 " WHERE OrderID = ? AND ProductID = ? AND " & _
 " Quantity = ? AND UnitPrice = ?"
 Dim cmd As New OleDbCommand(strSQL, cn)

 Dim pc As OleDbParameterCollection = cmd.Parameters

The UPDATE and INSERT queries submit new values to the
database for each column in the original query. These queries
reference each column in the original query in their WHERE
clauses. This approach has its benefits and drawbacks, which I’ll
discuss later in the chapter.

� �

 pc.Add("OrderID_New", OleDbType.Integer)
 pc.Add("ProductID_New", OleDbType.Integer)
 pc.Add("Quantity_New", OleDbType.SmallInt)
 pc.Add("UnitPrice_New", OleDbType.Currency)

 pc.Add("OrderID_Orig", OleDbType.Integer)
 pc.Add("ProductID_Orig", OleDbType.Integer)
 pc.Add("Quantity_Orig", OleDbType.SmallInt)
 pc.Add("UnitPrice_Orig", OleDbType.Currency)

 Return cmd
End Function

Private Function CreateInsertCommand() As OleDbCommand
 Dim strSQL As String
 strSQL = "INSERT INTO [Order Details] " & _
 " (OrderID, ProductID, Quantity, UnitPrice) " & _
 " VALUES (?, ?, ?, ?)"
 Dim cmd As New OleDbCommand(strSQL, cn)

 Dim pc As OleDbParameterCollection = cmd.Parameters
 pc.Add("OrderID", OleDbType.Integer)
 pc.Add("ProductID", OleDbType.Integer)
 pc.Add("Quantity", OleDbType.SmallInt)
 pc.Add("UnitPrice", OleDbType.Currency)

 Return cmd
End Function

Private Function CreateDeleteCommand() As OleDbCommand
 Dim strSQL As String
 strSQL = "DELETE FROM [Order Details] " & _
 " WHERE OrderID = ? AND ProductID = ? AND " & _
 " Quantity = ? AND UnitPrice = ?"
 Dim cmd As New OleDbCommand(strSQL, cn)

 Dim pc As OleDbParameterCollection = cmd.Parameters
 pc.Add("OrderID", OleDbType.Integer)
 pc.Add("ProductID", OleDbType.Integer)
 pc.Add("Quantity", OleDbType.SmallInt)
 pc.Add("UnitPrice", OleDbType.Currency)

 Return cmd
End Function

Visual C# .NET
static OleDbCommand CreateUpdateCommand()
{
 string strSQL;

 strSQL = "UPDATE [Order Details] " & _
 " SET OrderID = ?, ProductID = ?, " +
 " Quantity = ?, UnitPrice = ? " +
 " WHERE OrderID = ? AND ProductID = ? AND " +
 " Quantity = ? AND UnitPrice = ?";
 OleDbCommand cmd = new OleDbCommand(strSQL, cn);

 OleDbParameterCollection pc = cmd.Parameters;
 pc.Add("OrderID_New", OleDbType.Integer);
 pc.Add("ProductID_New", OleDbType.Integer);
 pc.Add("Quantity_New", OleDbType.SmallInt);
 pc.Add("UnitPrice_New", OleDbType.Currency);

 pc.Add("OrderID_Orig", OleDbType.Integer);
 pc.Add("ProductID_Orig", OleDbType.Integer);
 pc.Add("Quantity_Orig", OleDbType.SmallInt);
 pc.Add("UnitPrice_Orig", OleDbType.Currency);

 return cmd;
}

static OleDbCommand CreateInsertCommand()
{
 string strSQL;
 strSQL = "INSERT INTO [Order Details] " +
 " (OrderID, ProductID, Quantity, UnitPrice) " +
 " VALUES (?, ?, ?, ?)";
 OleDbCommand cmd = new OleDbCommand(strSQL, cn);

 OleDbParameterCollection pc = cmd.Parameters;
 pc.Add("OrderID", OleDbType.Integer);
 pc.Add("ProductID", OleDbType.Integer);
 pc.Add("Quantity", OleDbType.SmallInt);
 pc.Add("UnitPrice", OleDbType.Currency);

 return cmd;
}

static OleDbCommand CreateDeleteCommand()
{
 string strSQL;
 strSQL = "DELETE FROM [Order Details] " +
 " WHERE OrderID = ? AND ProductID = ? AND " +
 " Quantity = ? AND UnitPrice = ?";
 OleDbCommand cmd = new OleDbCommand(strSQL, cn);

 OleDbParameterCollection pc = cmd.Parameters;
 pc.Add("OrderID", OleDbType.Integer);
 pc.Add("ProductID", OleDbType.Integer);
 pc.Add("Quantity", OleDbType.SmallInt);
 pc.Add("UnitPrice", OleDbType.Currency);

 return cmd;
}

Using our parameterized Command objects to submit updates is fairly
straightforward. We need to examine the modified rows in our DataTable and
determine the type of change stored in each of these rows (update, insert, or delete).
Then we can use the contents of the row to populate the values of the parameters of
the appropriate command.

After we call the ExecuteNonQuery method to execute the query stored in the
Command, we can use the method’s return value to determine whether the update
attempt succeeded. If we successfully submit the pending change, we can call the
AcceptChanges method of the DataRow. Otherwise, we can set the DataRow
object’s RowError property to indicate that the attempt to submit the pending
change failed.

Visual Basic .NET
Private Sub SubmitChangesByHand()
 Dim cmdUpdate As OleDbCommand = CreateUpdateCommand()
 Dim cmdInsert As OleDbCommand = CreateInsertCommand()
 Dim cmdDelete As OleDbCommand = CreateDeleteCommand()
 Dim row As DataRow
 Dim intRowsAffected As Integer
 Dim dvrs As DataViewRowState
 dvrs = DataViewRowState.ModifiedCurrent _
 Or DataViewRowState.Deleted Or DataViewRowState.Added
 For Each row In tbl.Select("", "", dvrs)
 Select Case row.RowState
 Case DataRowState.Modified
 intRowsAffected = SubmitUpdate(row, cmdUpdate)
 Case DataRowState.Added
 intRowsAffected = SubmitInsert(row, cmdInsert)
 Case DataRowState.Deleted
 intRowsAffected = SubmitDelete(row, cmdDelete)
 End Select
 If intRowsAffected = 1 Then
 row.AcceptChanges()
 Else
 row.RowError = "Update attempt failed"
 End If
 Next row
End Sub

Private Function SubmitUpdate(ByVal row As DataRow, _
 ByVal cmd As OleDbCommand) As Integer
 Dim pc As OleDbParameterCollection = cmd.Parameters
 pc("OrderID_New").Value = row("OrderID")
 pc("ProductID_New").Value = row("ProductID")
 pc("Quantity_New").Value = row("Quantity")

 pc("UnitPrice_New").Value = row("UnitPrice")
 pc("OrderID_Orig").Value = row("OrderID", _
 DataRowVersion.Original)
 pc("Quantity_Orig").Value = row("Quantity", _
 DataRowVersion.Original)
 pc("ProductID_Orig").Value = row("ProductID", _
 DataRowVersion.Original)
 pc("UnitPrice_Orig").Value = row("UnitPrice", _
 DataRowVersion.Original)
 Return cmd.ExecuteNonQuery
End Function

Private Function SubmitInsert(ByVal row As DataRow, _
 ByVal cmd As OleDbCommand) As Integer
 Dim pc As OleDbParameterCollection = cmd.Parameters
 pc("OrderID").Value = row("OrderID")
 pc("ProductID").Value = row("ProductID")
 pc("Quantity").Value = row("Quantity")
 pc("UnitPrice").Value = row("UnitPrice")
 Return cmd.ExecuteNonQuery
End Function

Private Function SubmitDelete(ByVal row As DataRow, _
 ByVal cmd As OleDbCommand) As Integer
 Dim pc As OleDbParameterCollection = cmd.Parameters
 pc("OrderID").Value = row("OrderID", DataRowVersion.Original)
 pc("ProductID").Value = row("ProductID", DataRowVersion.Original)
 pc("Quantity").Value = row("Quantity", DataRowVersion.Original)
 pc("UnitPrice").Value = row("UnitPrice", DataRowVersion.Original)
 Return cmd.ExecuteNonQuery
End Function

Visual C# .NET
static void SubmitChangesByHand()
{
 OleDbCommand cmdUpdate = CreateUpdateCommand();
 OleDbCommand cmdInsert = CreateInsertCommand();
 OleDbCommand cmdDelete = CreateDeleteCommand();
 DataViewRowState dvrs;
 dvrs = DataViewRowState.ModifiedCurrent ¦�
 DataViewRowState.Deleted ¦� DataViewRowState.Added;
 int intRowsAffected = 0;
 foreach (DataRow row in tbl.Select("", "", dvrs))
 {
 switch (row.RowState)
 {
 case DataRowState.Modified:
 intRowsAffected = SubmitUpdate(row, cmdUpdate);
 break;

 case DataRowState.Added:
 intRowsAffected = SubmitInsert(row, cmdInsert);
 break;
 case DataRowState.Deleted:
 intRowsAffected = SubmitDelete(row, cmdDelete);
 break;
 }
 if (intRowsAffected == 1)
 row.AcceptChanges();
 else
 row.RowError = "Update attempt failed";
 }
}

static int SubmitUpdate(DataRow row, OleDbCommand cmd)
{
 OleDbParameterCollection pc = cmd.Parameters;
 pc["OrderID_New"].Value = row["OrderID"];
 pc["ProductID_New"].Value = row["ProductID"];
 pc["Quantity_New"].Value = row["Quantity"];
 pc["UnitPrice_New"].Value = row["UnitPrice"];
 pc["OrderID_Orig"].Value = row["OrderID",
 DataRowVersion.Original];
 pc["ProductID_Orig"].Value = row["ProductID",
 DataRowVersion.Original];
 pc["Quantity_Orig"].Value = row["Quantity",
 DataRowVersion.Original];
 pc["UnitPrice_Orig"].Value = row["UnitPrice",
 DataRowVersion.Original];
 return cmd.ExecuteNonQuery();
}

static int SubmitInsert(DataRow row, OleDbCommand cmd)
{
 OleDbParameterCollection pc = cmd.Parameters;
 pc["OrderID"].Value = row["OrderID"];
 pc["ProductID"].Value = row["ProductID"];
 pc[Quantity"].Value = row["Quantity"];
 pc["UnitPrice"].Value = row["UnitPrice"];
 return cmd.ExecuteNonQuery();
}

static int SubmitDelete(DataRow row, OleDbCommand cmd)
{
 OleDbParameterCollection pc = cmd.Parameters;
 pc["OrderID"].Value = row["OrderID", DataRowVersion.Original];
 pc["ProductID"].Value = row["ProductID",
 DataRowVersion.Original];
 pc["Quantity"].Value = row["Quantity", DataRowVersion.Original];
 pc["UnitPrice"].Value = row["UnitPrice",
 DataRowVersion.Original];

 return cmd.ExecuteNonQuery();
}

Now it’s time to put all this code to good use.

The following code snippet fetches the details for the order into a DataTable,
modifies the contents of the order, and submits the changes to the database. The
code will demonstrate that the code from the previous snippets will successfully
submit pending changes. It relies on the procedures we defined earlier in the
chapter. The code also includes a procedure to display the current contents of the
DataTable, which is used to verify that we’ve successfully updated the contents of the
order. To ensure that you can run this code snippet more than once, the code also
includes a ResetOrder procedure, which re-creates the original contents of the order.

Visual Basic .NET
Dim cn As OleDbConnection
Dim da As OleDbDataAdapter
Dim tbl As DataTable = GenTable()

Sub Main()
 Dim strConn, strSQL As String
 strConn = "Provider=SQLOLEDB;Data Source=(local)\NetSDK;" & _
 "Initial Catalog=Northwind;Trusted_Connection=Yes;"
 strSQL = "SELECT OrderID, ProductID, Quantity, UnitPrice " & _
 "FROM [Order Details] WHERE OrderID = 10503 " & _
 "ORDER BY ProductID"
 cn = New OleDbConnection(strConn)
 da = New OleDbDataAdapter(strSQL, cn)

 cn.Open()
 ResetOrder()
 da.Fill(tbl)
 DisplayOrder("Initial contents of database")
 ModifyOrder()
 DisplayOrder("Modified data in DataSet")
 SubmitChangesByHand()
 tbl.Clear()

The preceding code snippet used the DataTable object’s Select
method to loop through the modified rows. I had a good reason
to not use a For or For Each loop to examine each item in the
DataTable object’s Rows collection. When you successfully
submit a pending deletion and call the AcceptChanges method of
that DataRow, the item is removed from its parent collection.
The Select method returns an array of DataRow objects. The
array essentially contains pointers to the modified rows. If we
remove items from the DataTable object’s collection of DataRow
objects, the code will still succeed.

 da.Fill(tbl)
 DisplayOrder("New contents of database")
 cn.Close()
End Sub

Private Sub ModifyOrder()
 Dim row As DataRow

 row = tbl.Rows(0)
 row.Delete()

 row = tbl.Rows(1)
 row("Quantity") = CType(row("Quantity"), Int16) * 2

 row = tbl.NewRow
 row("OrderID") = 10503
 row("ProductID") = 1
 row("Quantity") = 24
 row("UnitPrice") = 18.0
 tbl.Rows.Add(row)
End Sub

Public Sub DisplayOrder(ByVal strStatus As String)
 Dim row As DataRow
 Dim col As DataColumn
 Console.WriteLine(strStatus)
 Console.WriteLine(" OrderID ProductID " & _
 "Quantity UnitPrice")
 For Each row In tbl.Select("", "ProductID")
 For Each col In tbl.Columns
 Console.Write(vbTab & row(col) & vbTab)
 Next
 Console.WriteLine()
 Next
 Console.WriteLine()
End Sub

Private Sub ResetOrder()
 Dim strSQL As String
 Dim cmd As OleDbCommand = cn.CreateCommand()
 strSQL = "DELETE FROM [Order Details] WHERE OrderID = 10503"
 cmd.CommandText = strSQL
 cmd.ExecuteNonQuery()
 strSQL = "INSERT INTO [Order Details] " & _
 " (OrderID, ProductID, Quantity, UnitPrice) " & _
 " VALUES (10503, 14, 70, 23.25) "
 cmd.CommandText = strSQL
 cmd.ExecuteNonQuery()
 strSQL = "INSERT INTO [Order Details] " & _
 " (OrderID, ProductID, Quantity, UnitPrice) " & _
 " VALUES (10503, 65, 20, 21.05)"

 cmd.CommandText = strSQL
 cmd.ExecuteNonQuery()
End Sub

Public Function GenTable() As DataTable
 Dim tbl As New DataTable("Order Details")
 Dim col As DataColumn
 With tbl.Columns
 col = .Add("OrderID", GetType(Integer))
 col.AllowDBNull = False
 col = .Add("ProductID", GetType(Integer))
 col.AllowDBNull = False
 col = .Add("Quantity", GetType(Int16))
 col.AllowDBNull = False
 col = .Add("UnitPrice", GetType(Decimal))
 col.AllowDBNull = False
 End With
 tbl.PrimaryKey = New DataColumn() {tbl.Columns("OrderID"), _
 tbl.Columns("ProductID")}
 Return tbl
End Function

Visual C# .NET
static OleDbConnection cn;
static OleDbDataAdapter da;
static DataTable tbl;

static void Main(string[] args)
{
 string strConn, strSQL;
 strConn = "Provider=SQLOLEDB;Data Source=(local)\\NetSDK;" +
 "Initial Catalog=Northwind;Trusted_Connection=Yes;";
 strSQL = "SELECT OrderID, ProductID, Quantity, UnitPrice " +
 "FROM [Order Details] WHERE OrderID = 10503 " +
 "ORDER BY ProductID";
 cn = new OleDbConnection(strConn);
 da = new OleDbDataAdapter(strSQL, cn);
 tbl = GenTable();

 cn.Open();
 ResetOrder();
 da.Fill(tbl);
 DisplayOrder("Initial contents of database");
 ModifyOrder();
 DisplayOrder("Modified contents of DataSet");
 SubmitChangesByHand();
 tbl.Clear();
 da.Fill(tbl);
 DisplayOrder("New contents of database");

 cn.Close();
}

static void ModifyOrder()
{
 DataRow row;

 row = tbl.Rows[0];
 row.Delete();

 row = tbl.Rows[1];
 row["Quantity"] = (Int16) row["Quantity"] * 2;

 row = tbl.NewRow();
 row["OrderID"] = 10503;
 row["ProductID"] = 1;
 row["Quantity"] = 24;
 row["UnitPrice"] = 18.0;
 tbl.Rows.Add(row);
}

static void DisplayOrder(string strStatus)
{
 Console.WriteLine(strStatus);
 Console.WriteLine(" OrderID ProductID " +
 "Quantity UnitPrice");
 foreach(DataRow row in tbl.Select("", "ProductID"))
 {
 foreach(DataColumn col in tbl.Columns)
 Console.Write("\t" + row[col] + "\t");
 Console.WriteLine();
 }
 Console.WriteLine();
}

static void ResetOrder()
{
 string strSQL;
 OleDbCommand cmd = cn.CreateCommand();
 strSQL = "DELETE FROM [Order Details] WHERE OrderID = 10503"
 cmd.CommandText = strSQL;
 cmd.ExecuteNonQuery();
 strSQL = "INSERT INTO [Order Details] " +
 " (OrderID, ProductID, Quantity, UnitPrice) " +
 " VALUES (10503, 14, 70, 23.25) "
 cmd.CommandText = strSQL;
 cmd.ExecuteNonQuery();
 strSQL = "INSERT INTO [Order Details] " +
 " (OrderID, ProductID, Quantity, UnitPrice) " +
 " VALUES (10503, 65, 20, 21.05)";
 cmd.CommandText = strSQL;

 cmd.ExecuteNonQuery();
}

static DataTable GenTable()
{
 DataTable tbl = new DataTable("Order Details");
 DataColumn col;
 col = tbl.Columns.Add("OrderID", typeof(int));
 col.AllowDBNull = false;
 col = tbl.Columns.Add("ProductID", typeof(int));
 col.AllowDBNull = false;
 col = tbl.Columns.Add("Quantity", typeof(Int16));
 col.AllowDBNull = false;
 col = tbl.Columns.Add("UnitPrice", typeof(Decimal));
 col.AllowDBNull = false;
 tbl.PrimaryKey = new DataColumn[] {tbl.Columns["OrderID"],
 tbl.Columns["ProductID"]};
 return tbl;
}

We just wrote a huge amount of code in order to submit pending updates. The
code that we used to generate the parameterized Command objects is specific to the
initial query. The code in the SubmitChangesByHand procedure, however, is
generic. It examines the cached changes in our DataTable, determines the type of
change stored in each modified DataRow, calls a function to execute the query to
submit the pending change, and then marks the DataRow appropriately, depending
on the function’s return value.

Essentially, we just re-created the updating functionality available through the
DataAdapter object, which I’ll cover next.

� �

