SSE2 for Dummies (who know C/C++) {3 GameDev.net

The IQ Quiz Taken By Millions

Previously offered only to corporations, schools, and certified professionals, millions Test my_math skills
of web surfers now flock to this scientifically accurate IQ Test only o find out they Test verbal skills

aren’t as smart as they thought... Continued... e —
Take the test, Learn more.

Spatal logic test

SSE2 for Dummies (who know C/C++)

by Zach Dwiel

Intro

ADVERTISEMENT

What is SSE2?

SSEZ2 is an extension of assembly language which allows
programs to execute one operation on multiple pieces of data
at a time. Because SSE2 is assembly however, it only works
on processors that support it. If the commands are attempted
to be executed on a machine which is not capable of doing so,
a general protection fault will be encountered. Luckily there
are easy ways to tell if the processor(s) you are running on
supports SSE2.

9 de cada 10 PC can
_+ estan infectadas con
Programas Espias.

Para realizar una revision
gratis del sistema, haga
clic en ACEFPTAR.

ACEFTAR

Basic Structure of SSE2

SSE2 works just like any other set of assembly calls. There
are registers in which data can be stored and operations that
can execute on these registers. Each register is 16 bytes (2
doubles). The 8 registers are named xmmO through xmm?7.

Basics

Some Code

inline void Add(double *x, double *y, double *retval)

{
asm
{ _ _ _ _
// Copy the first 16 bytes into xmmO, starting at the memory X points to
movupd xmmO, [x]
// Copy the first 16 bytes into xmml, starting at the memory y points to
movupd xmml, [y]
// Add the 2 doubles in xmml to the 2 doubles in xmmO, and put the
// result In xmmO, overwriting the previous data stored there
addpd xmmO, xmml
// Copy the 16 bytes of data in xmmO to the memory ret points to
movupd [retval], xmmO
}
}
Hopefully my comments before each line were enough to let you know what was going on. In case they
weren't, I'll go into a little more detail about each line.
asm{}

This keyword lets your compiler know that the code you are giving it will be in assembly and that it should
compile it as such. It also, conveniently, tells the compiler to inline the code. This means that there is NO
overhead for the asm block.

movupd xmmO, [x]
movupd xmml, [y]

This command copies data from the second operand to the first; as always in Intel syntax, the asm is in dest,
src order. By putting brackets around the x, we tell the mov command to copy the data that x points to the
actual value of the pointer. The square brackets can be thought of as a method of dereferencing a pointer.

addpd xmmO, xmml

This is the line that does the actual arithmetic. It takes the value from the 2nd operand, src, and adds it to
the 1st operand, dest, and stores the resulting value in the 1st operand, dest.

movupd [retval], xmmO

Here, we copy the data that is in xmmO to the memory that retval points to. Again, the square brackets
dereference the variable retval in the same way that a '*' does in C/C++.

Some more operations

subpd dest, src // subtract dest from src, store in dest

mulpd dest, src // multiply dest and src, store in dest

divpd dest, src // divide src by dest, store in dest

minpd dest, src // store the smallest value, either dest or src, in dest
maxpd dest, src // store the largest value, either dest or src, in dest
sqrtpd dest, src // take the square root of src and put the result in dest

A full list of SSE2 operations and a description of each can be found at HAYES Technologies.

Making the Most Of SSE2

The Faster Move Instruction

Up until now, we have been using movapd to move data to and from our registers. This is much slower than
the instruction movapd which does the exact same thing, but assumes that the data is 16 byte aligned. This
means that the pointer supplied must be divisible by 16. This becomes a rather large problem if you are
compiling your code with gcc or the one supplied with Microsoft Visual C++. One solution to this problem is
to use a different compiler such as one that Intel provides. The inherent problem with this is that the Intel
compiler is not freeware like gcc. If you have already spent money on some other compiler, you probably do
not want to spend more on this new compiler. One hack that | have come up with is the following:

#define AllignData(data) (void *)(((int)data + 15) &~ OxOF)
//or an inline function if you prefer:
inline void *AllignData(void *data)

return (void *)(((int)data + 15) &~ OxO0F);
}

void main

{

const int sizeofdata = 512;

double *lotsofdata;
double *tempptr;

tempptr = new double[sizeofdata + 2];
lotsofdata = AllignData(tempptr);

asm
{

movapd xmmO, [lotsofdata];

// do lots of CPU intensive SSE2 operations on lotsofdata here

}

delete [] tempptr;

lotsofdata = 0;

// do not delete lotsofdata, just set it to O, the memory it
// points to is no longer valid

}

What we need for this instruction to work is memory that has a 16-byte alligned memory address.

=980 1

| oxotoodzes | oxofoodazo | ox0f00d378 | oxofoodzso | omofoodass | 0=0£004390

Memory that is 16byte alligned:

R

| oxotoodzes | oxofoodazo | om0f00d378 | oxofoodzso | omofoodass | 0=0£004390

When we use the new command in C/C++ to allocate memory, we are given memory that may or may not
be 16byte alligned. So, what we do, is instead of using the very first bit of our memory block, we start using

it at the first place that is 16byte alligned.
-- yellow is unusbale, green is what we actually use --

=980 1

| Ox0£f00d368 | Ox0f00d370 | Ox0£00d4378 | Ox0f00d380 | Ox0f00d388 | Ox0£00d4390

By doing this, we waste the memory that comes before the first 16-byte alligned memory address. Normally
this is not too big of a problem as the overhead is only once per memory block and if we are allocating large
amounts of memory at once, 1 or even 12 bytes will hardly make a difference. The only problem with this is
that by not using the beginning of our memory, we end up having a smaller amount of usable memory than

we asked for. In the worst case, 15 bytes are not usable:

=980 1

| oxotoodzes | oxofoodazo | om0f00d378 | oxofoodzso | omofoodass | 0=0£004390

Therefore, to make sure that we get a specific number of usable bytes, we allocate at least 15 extra bytes. In
the case of allocating double values, this means we must allocate an extra 2 doubles, giving us 16 extra

bytes:

R

| Ox0£f00d368 | Ox0f00d370 | Ox0£00d4378 | Ox0f00d380 | Ox0f00d388 | Ox0£00d4390

If you are not using doubles, just make sure that at least 15 extra bytes are allocated. Just determine the
size of the data type and compute how many are needed to give you the needed padding.

Another important thing to notice is that we delete the variable that holds the original pointer to all of our
memory. If you try to delete the memory starting in the middle of our memory block, you cause a general

protection fault and have a memory leak.

Ordering Your Operations

One thing that is often over looked is the order that registers are used. When an operation is performed,

there is a delay while the result is bieng moved to its destination. if the next operation requires this value, it
must wait for it to be stored into the register. If however, the next operation does not need this data, it does
not need to wait for it to be stored, it can go ahead and execute at the same time that the previous result is

getting stored.

For instance, there will be a speed difference between the following two code segments:

#1:

asm

{
movupd xmmO, [x] // xmm0 = X
movupd xmml, [y] // xmml =y

movupd xmm2, [z] // xmm2 = z

movupd xmm3, [w] // xmm3 = w

movapd xmm4, xmm2 // xmm4d = z

movapd xmm5, xmml // xmm5 =y

movapd xmm6, xmmO // xmm6 = X

addpd xmm2, xmm3 // xmm2 = z + w

addpd xmml, xmm2 // xmml =y + z + w
addpd xmmO, xmm1 // xmmO = X +y + z + w
mulpd xmm4, xmm3 // xmm4d = z * w

mulpd xmm5, xmm4 // xmmb5 =y * z * w
mulpd xmm6, xmm5 // xmm6 = X *y * z * w

divpd xmm0O, xmm6 // xmmO xX*y*z*w)/ X+y+z+w

movupd [ret], xnmO // ret = (X *y *z*w) / (X +y + 2z +Ww)

}
#2:
asm
{
movupd xmmO, [x] // xmm0 = X
movupd xmml, [y] // xmml =y
movupd xmm2, [z] // xmm2 = z
movupd xmm3, [w] // xmm3 = w
movapd xmm4, xmm2 // xmmd = z
movapd xmm5, xmml // xmm5 =y
movapd xmm6, xmmO // xmm6 = X
addpd xmm2, xmm3 // xmm2 = z + w
mulpd xmm4, xmm3 // xmm4d = z * w
addpd xmml, xmm2 // xmml =y + z + w
mulpd xmm5, xmm4 // xmm5 =y * z * w
addpd xmmO, xmm1 // xmmO = X +y + z + w
mulpd xmm6, xmm5 // xmm6 = X *y * z * w
divpd xmmO, xmmé // xmm0 = (X *y *z*w) / (X +y + z+w
movupd [ret], xnmO // ret = X *y *z*w) / (X +y + 2z +Ww
}

The second piece of code will run faster. This is because in the second case, there are only 2 cases where one
instruction relies on the data from the previous one to perform its computations. Because of this, instructions
can be executed immediately after the previous one finsihes instead of waiting for it to store its result in the
registers.

Don't get carried away

A common mistake made by people new to SSE2 is to convert a lot of their old and future code into SSE2.
This can actually result in slower code. The reason for this is the very large overhead for the CPU to copy

memory to the registers. If you have an application that is doing a small number of operations on a large

data set, you can expect to be less efficient than if you are doing a lot of operations on a small amount of
data.

Compiling SSE2 with gcc/g++

The first thing that you need to remember to do when you want to compile SSE2 embedded C/C++ code with
gcc/g++, is to throw in the -masm=intel switch during compile. You must also put ".intel_syntax noprefix" in
front of your asm code and surround it with quotes like this:

asm("'.intel_syntax noprefix\n');

asm("’ mov eax, x\n');

asm("’ movupd xmmO, [eax+0x00]\n"");
asm("’ movupd xmml, [eax+0x10]\n'");
asm("’ addpd xmmO, xmm1\n');

asm("’ movupd [eax+0x20], xmmO\n');
or

asm(*".intel_syntax noprefix

mov eax, X
movupd xmmO, [eax+0x00]
movupd xmml, [eax+0x10]
addpd xmmO, xmml

movupd [eax+0x20], xmmO\n');

Note that the asm block is inside "()" not "{}". Also, if you want to use a variable declared in your C/C++

code, you must define it publicly. Any variables defined locally, whether inside your main function, inside a
for loop, etc, will not be seen by the linker and will be considered an "undefined reference".

End

Questions? Comments? Suggestions? mis-spellings? Grammatical Errors? Email me at dwiel@insightbb.com

Author: Zach Dwiel
Last Updated: 08/23/03

Discuss this article in the forums

Date this article was posted to GameDev.net: 8/31/2003
(Note that this date does not necessarily correspond to the date the article was written)

See Also:
All

x86 Assembly

© 1999-2005 Gamedev.net. All rights reserved. Terms of Use Privacy Policy
Comments? Questions? Feedback? Send us an e-mail!

mailto:dwiel@insightbb.com

