

Versión 3.0

800x600 mínimo

En esta
lección:

Operaciones de
escritura

Operaciones de
lectura

Operaciones con
archivos binarios

Lectura y
escritura en un
archivo

Salida a
impresora

Descargas

Otras
secciones:

Conceptos
básicos

Programando en
C

Programando en
C++

Programando
Windows 9x.

Teoría
electrónica

Circuitos
electrónicos

Actividades
adicionales

Hipervínculos

Contácteme:

Dudas y
comentarios

Entrada/Salida de archivos
 En el capítulo 1 trabajamos con flujos de E/S hacia los dispositivos estándar por
defecto definidos en C++ que son el teclado para operaciones de entrada, y el
monitor para operaciones de salida. Ahora que tenemos una mejor perspectiva acerca
de qué son las clases, capítulo 3, es conveniente dar una repasada al capítulo 1 y en
éste artículo trataremos los principales aspectos de las operaciones de E/S en
archivos.

Operaciones de escritura en archivos

 El archivo de cabecera fstream.h define las clases ifstream, ostream y fstream
para operaciones de lectura, escritura y lectura/escritura en archivos
respectivamente. Para trabajar con archivos debemos crear objetos de éstas clases
de acuerdo a las operaciones que deseamos efectuar. Empezamos con las
operaciones de escritura, para lo cual básicamente declaramos un objeto de la clase
ofstream, después utilizamos la función miembro open para abrir el archivo,
escribimos en el archivo los datos que sean necesarios utilizando el operador de
inserción y por último cerramos el archivo por medio de la función miembro close,
éste proceso está ilustrado en nuestro primer programa, archiv01.cpp.

//***
// archiv01.cpp
// Demuestra la escritura básica en archivo
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>

int main()
{
 ofstream archivo; // objeto de la clase ofstream

 archivo.open("datos.txt");

 archivo << "Primera línea de texto" << endl;
 archivo << "Segunda línea de texto" << endl;
 archivo << "Última línea de texto" << endl;

 archivo.close();
 return 0;
}

 En el programa se ha creado un objeto de la clase ofstream llamado archivo,
posteriormente se utiliza la función miembro open para abrir el arcivo especificado en
la cadena de texto que se encuentra dentro del paréntesis de la función. Por lo visto
en el capítulo 3 sabemos que podemos invocar a la función constructora de clase de
tal manera que el archivo también se puede abrir utilizando la siguiente instrucción:

ofstream archivo("datos.txt"); // constructora de ofstream

 Naturalmente, al utilizar la función constructora ya no es necesario utilizar la
función miembro open, ésta forma de abrir un archivo es preferida porque el código
es más compacto y fácil de leer. De la misma forma que se utilizan manipuladores de

salida para modificar la presentación en pantalla de los datos del programa, igual es
posible utilizar éstos manipuladores al escribir datos en un archivo como lo demuestra
el programa archiv02.cpp, observe que se utiliza un constructor para crear y abrir el
archivo llamado Datos.txt:

//***
// archiv02.cpp
// Demuestra el uso de manipuladores
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <iostream.h>
#include <fstream.h>
#include <iomanip.h>

int main()
{
 ofstream archivo("Datos.txt"); // constructor de ofstream
 int numero;

 cout << "Introduzca un numero:" << endl;
 cin >> numero;
 archivo << "El valor introducido en base 10 es: "
 << numero << endl;

 archivo << resetiosflags(ios::dec);
 archivo << setiosflags(ios::oct);
 archivo << "en base octal es: " << numero << endl;

 archivo << resetiosflags(ios::oct);
 archivo << setiosflags(ios::hex);
 archivo << "y en base hexadecimal es: " << numero << endl;
 archivo << setiosflags(ios::uppercase|ios::showbase);
 archivo << "utilizando los manipuladores uppercase y showbase"
 " el valor es: " << numero << endl;

 archivo << resetiosflags(ios::uppercase|ios::showbase);
 archivo << resetiosflags(ios::hex);
 archivo << setiosflags(ios::showpos|ios::showpoint|ios::fixed);
 archivo << "Utilizando los manipuladores showpos,"
 " showpoint y fixed: " << (float)numero << endl;

 archivo << resetiosflags(ios::showpos|ios::showpoint|
 ios::fixed);
 archivo << "Finalmente el valor es " << numero << endl;

 archivo.close();

 return 0;
}

Modos de apertura de archivo

 Al especificar la apertura de un archivo como se ha mostrado en los programas
anteriores, el programa sobreescribe cualquier archivo existente llamado Datos.txt en
el directorio de trabajo del programa. Dependiendo del propósito del programa es
posible que sea necesario agregar datos a los ya existentes en el archivo, o quizá sea
necesario que las operaciones del programa no se lleven a cabo en caso de que el
archivo especificado exista en el disco, para éstos casos podemos especificar el modo
de apertura del archivo incluyendo un parámetro adicional en el constructor,
cualquiera de los siguientes:

ios::app Operaciones de añadidura.
ios::ate Coloca el apuntador del archivo al final del mismo.
ios::in Operaciones de lectura. Esta es la opción por defecto para objetos de la
clase ifstream.
ios::out Operaciones de escritura. Esta es la opción por defecto para objetos de
la clase ofstream.
ios::nocreate Si el archivo no existe se suspende la operación.
ios::noreplace Crea un archivo, si existe uno con el mismo nombre la
operación se suspende.

ios::trunc Crea un archivo, si existe uno con el mismo nombre lo borra.
ios::binary Operaciones binarias.

 De esta manera, podemos modificar el modo de apertura del programa
archiv02.cpp para que los datos del programa se concatenen en el archivo Datos.txt
simplemente escribiendo el constructor así: ofstream archivo("Datos.txt", ios::app);. Si
deseamos que el programa no sobreescriba un archivo existente especificamos el
constructor de ésta manera: ofstream archivo("Datos.txt", ios::noreplace);. Utilizando
los especificadores de modo de apertura se puede conseguir un mayor control en las
operaciones de E/S en archivos.

Volver al principio

Operaciones de lectura de archivos

 Para abrir un archivo y realizar operaciones de lectura se crea un objeto de la
clase ifstream y se procede prácticamente de la misma forma que lo expuesto en el
apartado anterior. Después de abrir el archivo se puede leer su contenido utilizando
las funciones miembro de la clase ifstream o bién el operador de extracción. Cuando
se lee un archivo, por lo general se empieza al principio del mismo y se leerá su
contenido hasta que se encuentre el final del archivo. Para determinar si se ha llegado
al final del archivo se puede utilizar la función miembro eof como condición de un
bucle while. Además se puede utilizar la función miembro fail para detectar un error
al abrir el archivo, esto se demuestra en el siguiente programa, archiv03.cpp:

//***
// archiv03.cpp
// Demuestra operaciones de lectura de archivos
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>

int main()
{
 ifstream archivo("Besos.txt", ios::noreplace);
 char linea[128];
 long contador = 0L;

 if(archivo.fail())
 cerr << "Error al abrir el archivo Besos.txt" << endl;
 else
 while(!archivo.eof())
 {
 archivo.getline(linea, sizeof(linea));
 cout << linea << endl;
 if((++contador % 24)==0)
 {
 cout << "CONTINUA...";
 cin.get();
 }
 }
 archivo.close();
 return 0;
}

 El programa crea un objeto de la clase ifstream para abrir el archivo llamado
Besos.txt utilizando el constructor de clase y especificando la bandera ios::noreplace
que evita que el archivo sea sobreescrito. Si por algún motivo ocurre un error al abrir
el archivo se genera el mensaje de error especificado en la línea 16. En ausencia de
errores el programa entra en un bucle while el cual está evaluado por efecto de la
función miembro eof() de tal manera que el bucle se ejecuta hasta encontrar el final
del archivo. Utlizando la función miembro getline() se obtiene una línea de texto y se
exhibe en pantalla, línea 21, luego utilizamos una instrucción condicional if con el
operador de módulo (%) para determinar si se han leído 24 líneas de texto. Cada vez
que el contador de líneas dividido entre 24 dé como resultado un resíduo de cero el
programa se detiene permitiendo leer las 24 líneas de texto previas. Para continuar

se debe presionar la tecla enter y entonces el programa leerá y mostrará en pantalla
las siguientes 24 líneas de texto, líneas 22 a la 26.

Analizando el éxito de E/S de archivos

 En el programa archiv03.cpp se utilizó la función miembro fail() para determinar
el éxito de la operación de apertura del archivo Besos.txt. La función miembro fail()
produce el valor de 1 si ocurre un error en la operación de archivo. Similarmente es
recomendable utilizar otras funciones para verificar no solo la apertura de archivo
sino también las operaciones de lectura y escritura, las funciones miembro que nos
permiten éstas pruebas son las siguientes:

good Produce un 1 si la operación previa fué exitosa.
eof Produce un 1 si se encuentra el final del archivo.
fail Produce un 1 si ocurre un error.
bad Produce un 1 si se realiza una operación inválida.

 Tres de las cuatro funciones enlistadas quedan demostradas en el siguiente
programa llamado archiv04.cpp el cual copia el contenido del archivo llamado
Besos.txt en uno llamado Copia.txt. En primer lugar se crea un objeto de la clase
ifstream llamado origen que nos sirve para abrir el archivo Besos.txt para operaciones
de lectura, la función miembro origen.fail() nos indica la existencia de un error, en
caso de que éste exista se despliega un mensaje en pantalla y el programa termina.
Si la apertura del archivo Besos.txt fué exitosa se procede entonces a la siguiente
parte del programa donde se crea un objeto de la clase ofstream llamado destino
para operaciones de escritura el cual especifica que el archivo a crear se llamará
Copia.txt y de acuerdo a la bandera ios::noreplace, si existe un documento con el
nombre de Copia.txt la función constructora fallará, éste proceso es detectado por la
función miembro destino.fail() desplegando un mensaje en pantalla y terminando el
programa. archiv04.cpp es un programa que sirve para copiar un archivo basado en
caracteres ASCII.

//***
// archiv04.cpp
// Demuestra éxito en operaciones de E/S de archivos
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>
#include <stdlib.h>

int main()
{
 ifstream origen("Besos.txt");
 char linea[128];

 if(origen.fail())
 cerr << "Error al abrir el archivo Besos.txt" << endl;
 else
 {
 ofstream destino("Copia.txt", ios::noreplace);
 if(destino.fail())
 cerr << "Error al crear el archivo \"Copia.txt\""
 << endl;
 else
 {
 while(!origen.eof())
 {
 origen.getline(linea, sizeof(linea));
 if(origen.good()) // si lectura ok y
 if(origen.eof()) // si eof, -> termina
 exit(1); // el programa
 else
 destino << linea << endl;
 if(destino.fail())
 {
 cerr << "Fallo de escritura en archivo"
 << endl;
 exit(1);
 }
 }

 }
 destino.close();
 }
 origen.close();

 return 0;
}

 En caso que las operaciones de apertura de los archivos involucrados en el
programa archiv04.cpp sean exitosas, entonces se inicia un bucle en donde se lee en
primer lugar una línea de texto, línea 27 del programa, el éxito de ésta operación es
monitoreado por la función miembro origen.good(), si ésta función indica que la
lectura del archivo fué exitosa entonces la función miembro origen.eof() verifica si la
línea en cuestión es el final del archivo, si no es así, entonces la línea leída se escribe
en el archivo Copia.txt, entonces le corresponde a la función miembro destino.fail()
verificar que el proceso de escritura tuvo éxito, línea 33 del programa. El bucle se
repite hasta encontrar el final del archivo, condición que se verifica tanto en la linea
25 como en la 29 del programa.

Volver al principio

Operaciones con archivos binarios

 Las operaciones de flujos de archivos se ejecutan en forma predeterminada en
modo de texto, sin embargo hay ocasiones en donde se requiere realizar operaciones
en archivos binarios, como sucede con archivos de estructuras de datos ó aquellos
que contienen datos numéricos de punto flotante. A manera de prueba trate de
relaizar una copia de un archivo ejecutable utilizando el programa archiv04.cpp, se
dará cuenta que si bién, el programa no marca errores, el resultado sencillamente no
es el esperado. La prueba definitiva es comparar el tamaño en bytes del archivo
original contra el tamaño del archivo copiado.

 El programa archiv05.cpp ejecuta operaciones de E/S en archivos utilizando el
modo binario (ios::binary), éste programa puede copiar efectivamente un archivo
ejecutable, en el ejemplo Archiv04.EXE, generando un nuevo archivo llamado
Copia.EXE, el nuevo código, basado en archiv04.cpp es el siguiente:

//***
// archiv05.cpp
// Demuestra operaciones con archivos binarios
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>
#include <stdlib.h>

int main()
{
 ifstream origen("Archiv04.exe", ios::binary);
 char linea[1];

 if(origen.fail())
 cerr << "Error al abrir el archivo Archiv04.exe" << endl;
 else
 {
 ofstream destino("Copia.exe", ios::binary);
 if(destino.fail())
 cerr << "Error al crear el archivo \"Copia.exe\""
 << endl;
 else
 {
 while(!origen.eof()&&!origen.fail())
 {
 origen.read(linea, sizeof(linea));
 if(origen.good())
 {
 destino.write(linea, sizeof(linea));
 if(destino.fail())
 {

 cerr << "Error en el archivo \"Copia.exe\""
 << endl;
 exit(1);
 }
 }
 else if(!origen.eof())
 {
 cerr << "Error en el archivo \"Archiv04.exe\""
 << endl;
 exit(1);
 }
 }
 }
 destino.close();
 }
 origen.close();

 return 0;
}

 Observará que se utiliza la función miembro origen.read() para leer un byte del
archivo especificado por el objeto de la clase ifstream llamado origen, línea 27. En
forma similar, se utiliza la función miembro destino.write() para escribir un byte en
el archivo especificado para el objeto de la clase ofstream llamado Copia.EXE, línea 30
del programa. La comprobación de las operaciones de E/S se realizan como se indicó
para el programa archiv04.cpp. Si se desea utilizar los operadores de inserción y
extracción para operaciones de E/S en archivos binarios se requiere sobrecargar éstos
operadores, ésto lo trataremos más adelante cuando se aborde el tema de la
sobrecarga de operadores en C++.

Volver al principio

Lectura y escritura en un archivo

 Hasta este punto hemos efectuado operaciones, sea de escritura o bién de lectura
en un archivo, tanto en formato de texto como en formato binario pero todavía no se
han efectuado ámbas operaciones en un mismo archivo. En ciertas aplicaciones es
necesario efectuar operaciones de lectura/escritura en un archivo como es el caso de
una base de datos, para esto es necesario crear un objeto de la clase fstream.
Cuando un programa abre un archivo para operaciones de E/S éste mantiene el
registro de dos apuntadores de archivo, uno para operaciones de lectura y otro para
operaciones de escritura. Como en la mayoría de los casos en que se abre un archivo
para operaciones de E/S se efectúa acceso aleatorio, analizaremos ésta condición.

Acceso aleatorio de archivos

 En los programas presentados hasta este punto se han realizados operaciones
secuenciales en el archivo, ya sea para escritura ó lectura de datos, empezando por el
principio y continuando hasta el final del mismo. Las operaciones aleatorias en un
archivo no necesariamente inician por el principio del archivo, en lugar de ésto es
posible desplazarse por el contenido del archivo para realizar una operación de E/S.
Para mover los apuntadores de archivo a posiciones específicas se utilizan dos
funciones: seekg() coloca el apuntador de escritura de archivo en un lugar
específico, y seekp() mueve el apuntador de lectura a una posición específica en el
archivo, la sintáxis de las funciones es ésta:

seekp(desplazamiento, posicion)
seekg(desplazamiento, posicion)

 El parámetro desplazamiento especifica la cantidad de bytes que se moverá el
apuntador de archivo, puede ser un valor positivo ó negativo. El parámetro posicion
especifica el lugar del archivo a partir del cual se moverá el apuntador de archivo, de
acuerdo a las siguientes banderas

ios::beg Desde el principio del archivo
ios::cur Desde la posición actual del apuntador

ios::end Desde el fin del archivo

 Para demostrar las operaciones aleatorias conviene generar un breve archivo de
texto en donde poder efectuar algunas operaciones de E/S, use el siguiente código:

//***
// letras.cpp
// Genera un abecedario
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>

int main()
{
 ofstream archivo("Letras.txt");

 for(char letra='A'; letra <='Z'; letra++)
 archivo << letra;
 archivo.close();

 return 0;
}

 El código genera un alfabeto en el archivo llamado Letras.txt, ahora utilizaremos
el programa archiv06.cpp para "navegar" por el contenido del archivo y generar una
palabra amigable en pantalla:

//***
// archiv06.cpp
// Demuestra lectura y escritura en un archivo
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>

int main()
{
 char letra;
 fstream letras("Letras.txt", ios::in|ios::out);

 letras.seekg(7, ios::beg); // obtiene la letra H
 letra=letras.get();
 letras.seekp(0, ios::end);
 letras << letra; // coloca la letra al final

 letras.seekg(-13, ios::end); // obtiene la letra O
 letra = letras.get();
 letras.seekp(0, ios::end);
 letras << letra;

 letras.seekg(-17, ios::end); // obtiene la letra L
 letra = letras.get();
 letras.seekp(0, ios::end);
 letras << letra;

 letras.seekg(0, ios::beg); // obtiene la letra A
 letra = letras.get();
 letras.seekp(0, ios::end);
 letras << letra;

 letras.seekg(-4, ios::end);
 while(!letras.eof())
 cout.put((char)letras.get());

 letras.close();

 return 0;
}

 Observe que para posicionar el apuntador de lectura de archivo a partir del fin del
mismo se utiliza un número negativo y además la lectura avanza hacia el final del
archivo. Por la naturaleza del programa archiv06.cpp solo desplegará el mensaje
HOLA en pantalla una sola vez, esto es porque las letras que forman la palabra

"HOLA" se leen del archivo y a su vez se escriben al final del mismo, el código toma
en cuenta las letras previamente escritas, lineas 19 a la 32. Para un mejor
entendimiento del funcionamiento del programa utilice el depurador de errores de su
compilador en la modalidad de paso por paso.

Volver al principio

Salida a impresora

 De la misma manera en que es posible escribir la salida en un archivo, habrá
ocasiones en las que es necesario producir constancia en papel utilizando una
impresora. En general es posible tratar a la impresora como uno más de los
dispositivos disponibles para la salida de datos, se crea un objeto de la clase ofstream
especificando como nombre de archivo la palabra PRN, tal y como lo demuestra el
último programa de éste capítulo, archiv07.cpp:

//***
// archiv07.cpp
// Demuestra la salida a impresora
// ©1999, Jaime Virgilio Gómez Negrete
//***

#include <fstream.h>
#include <stdlib.h>

int main()
{
 char texto[256];
 ofstream impresora("PRN");
 ifstream archivo("Besos.txt");

 if (archivo.fail())
 cerr << "Error al abrir el archivo \"Besos.txt\""
 << endl;
 else
 {
 while (!archivo.eof())
 {
 archivo.getline(texto, sizeof(texto));
 if (archivo.good())
 {
 impresora << texto << endl;
 if (impresora.fail())
 {
 cerr << "Error de escritura en impresora"
 << endl;
 exit(1);
 }
 }
 else if (!impresora.eof())
 {
 cerr << "Error al leer el archivo \"Besos.txt\""
 << endl;
 exit(1);
 }
 }
 archivo.close();
 impresora.close();
 }

 return 0;
}

Volver al principio

Descargas

 El código fuente de los programas del presente capítulo están contenidos en el
archivo comprimido llamado archiv.zip (24.5 Kb.), para descargarlo haga clic aquí.

Volver al principio

© 1999 Virgilio Gómez Negrete, Derechos Reservados

