Cargar .ASE’s

Vertices.h

#pragma once
#include <stdlib.h>

struct Vert3d {

float VX;
float VY;
float |74
int ID;
¥
class CVertices
{
public:
CVertices(int Num);
~CVertices(void);
void Anadir(float x, float y, float z, int id);
Vert3d Devolver(int NumVer);
private:
Vert3d *Vert;
int NumVert;
13
Vertices.cpp

#include "vertices.h"

CVertices::CVertices(int Num)

{
NumVert=0;
Vert = new Vert3d[Num];
}
CVertices::~CVertices(void)
{
delete [] Vert;
}
void CVertices::Anadir(float x, float y, float z, int id)
{
Vert[NumVert].VX=x;
Vert[NumVert].VY=y;
Vert[NumVert].VZ=z;
Vert[NumVert].ID=id;
NumVert++;
}
Vert3d CVertices::Devolver (int NumVer)
{
return this->Vert[NumVer];
}
CargaASE.h

#pragma once

#include <stdio.h>

#include <string.h>

#include <windows.h>

#include <gl\gl.h>

#include <gl\glu.h>

#include "Vertices.h"

#pragma comment(lib, "opengl32.1ib")
#pragma comment(lib, "glu32.lib")

struct SCara {

int VerticeA;
int VerticeB;
int VerticeC;
¥
class CCargaASE
{
public:
CCargaASE (char *fichero, unsigned int *Tex, int *NumTex, bool ConTex, bool ConNor, int IDobj);
~CCargaASE(void);
void MuestraASE();
void DiNumObj(HWND hwnd);

private:

int ID;

int NumVert;
int NumObj;
bool ConText;

bool ConNorm;
CVertices *Vertex;

SCara *Caras;

CVertices *TexVer;

SCara *TexCar;

CVertices *NorCar;
void CrealListas(int Ini, int Fin, int Cara, unsigned int Texture, int TIni, int TFin, BOOL definitive);

CargaASE.cpp
#include "cargaase.h"

CCargaASE::CCargaASE(char *fichero, unsigned int *Tex, int *NumTex, bool ConTex, bool ConNor, int IDobj)
{
FILE *Fic;
char datos[255];
int Func=0;
bool sal;
bool Tsal;
float x, y, z;
int Temp;
int Vertini=0;
int NumCaras=0;
int NumTC=0;
int id;
int CaraAct;
int VertFin=0;
int NumTV=0;
int TVertIni=0;
int TVertFin=0;
int TCarAct=0;
int TextAct=0;
int NCarAct=0;

NumVert=0;

ID = IDobj * 10000;
NumObj=0;
ConText=ConTex;
ConNorm=ConNor;

Fic = fopen (fichero, "r");
while (feof(Fic))
{

fscanf (Fic, "%s", &datos);

Temp=0;

if(!strcmp (datos, *MESH_NUMVERTEX"))
fscanf (Fic, "%d", &Temp);

NumVert += Temp;
Temp=0;
if (Istrcmp (datos,™*MESH_NUMFACES"))
fscanf (Fic, "%d", &Temp);
NumCaras += Temp;
Temp=0;
if (Istrcmp (datos,"*MESH_NUMTVERTEX"))
fscanf (Fic, "%d", &Temp);
NumTV += Temp;
Temp=0;
}

Vertex = new CVertices (NumVert);
Caras = new SCara [NumCaras];

if (ConText) {
TexVer = new CVertices (NumTV);
TexCar = new SCara [NumCaras];

}
if (ConNorm) {

NorCar = new CVertices(NumCaras);
}

NumCaras=0;

rewind (Fic);
while (!feof(Fic))
{

fscanf (Fic, "%s", &datos);

if (Istrcmp (datos, *MESH_NUMFACES"))

{
fscanf (Fic, "%d", &NumCaras);
}
if (Istrcmp (datos,"™*MESH_VERTEX_LIST"))
{
sal=false;
while (Isal)
{
fscanf (Fic, "%s", &datos);
if (Istrcmp (datos,"{")) Func++;
if (Istrcmp (datos,"}")) Func--;
if (Func==0) sal=true;
if (Istrcmp (datos,"™*MESH_VERTEX"))
{
fscanf (Fic, "%d", &Temp);
id=Temp;
fscanf (Fic, "%f %f %f", &x, &y,&z);
Vertex->Anadir (x, y, z, id);
}
}
NumObj++;
VertFin = Vertini + Temp;
}
if (Istrcmp (datos,"*MESH_FACE_LIST"))
{
sal=false;
CaraAct=0;
while (Isal)
{
fscanf (Fic, "%s", &datos);
if (Istrcmp (datos,"{")) Func++;
if (Istrcmp (datos,"}")) Func--;
if (Func==0) sal=true;
if (Istrcmp (datos,"™*MESH_FACE"))
{
fscanf (Fic, "%s", &datos);
fscanf (Fic, "%s", &datos);
fscanf (Fic, "%d", &Caras[CaraAct].VerticeA);
fscanf (Fic, "%s", &datos);
fscanf (Fic, "%d", &Caras[CaraAct]. VerticeB);
fscanf (Fic, "%s", &datos);
fscanf (Fic, "%d", &Caras[CaraAct].VerticeC);
CaraAct++;
}
}
if (ConText) {
Tsal=false;

while (ITsal) {
fscanf (Fic, "%s", &datos);
if (Istrcmp (datos,*MESH_TVERTLIST"))
{

sal=false;
while (Isal)
{
fscanf (Fic, "%s", &datos);
if (Istrcmp (datos,"{")) Func++;
if (Istrcmp (datos,"}")) Func--;
if (Func==0) sal=true;
if (Istrcmp (datos,"*MESH_TVERT"))
{
fscanf (Fic, "%d", &Temp);
id=Temp;
fscanf (Fic, "%f %f %f" &x,
&y,&z);
TexVer->Anadir (x, y, z, id);
}
}
TVertFin = TVertini + Temp;
}

if (Istrcmp (datos,"*MESH_TFACELIST"))
{

sal=false;
TCarAct=0;
while (Isal)
{
fscanf (Fic, "%s", &datos);
if (Istrcmp (datos,"{")) Func++;
if (Istrcmp (datos,"}")) Func--;
if (Func==0) sal=true;
if (Istrcmp (datos,"*MESH_TFACE"))

fscanf (Fic, "%d", &TexCar[TCarAct]);

fscanf (Fic, "%d %d %d",
&TexCar[TCarAct]. VerticeA, &TexCar[TCarAct]. VerticeB, &TexCar[TCarAct].VerticeC);
TCarAct++;
}
}
Tsal=true;
}
}
}
Temp=NCarAct;
if (ConNorm) {
sal=false;
while (!sal)
{
fscanf (Fic, "%s", &datos);
if (Istrcmp (datos,"{")) Func++;
if (Istrcmp (datos,"}")) Func--;
if (Func==0) sal=true;
if (Istrcmp (datos, *MESH_FACENORMAL"))
{
fscanf (Fic, "%d %f %f %f", &id, &x, &y,&z);
NorCar->Anadir (x,y,z,NCarAct);
NCarAct++;
}
if (NCarAct==Temp) sal=false;
}
}

CrealListas(Vertlni, VertFin, NumCaras, Tex| NumTex[NumObj-1]], TVertini, TVertFin, false);
Vertini = VertFin+1;
TVertini = TVertFin+1;

}

fclose (Fic);
Crealistas(0,0,0,0,0,0,true);

}

CCargaASE::~CCargaASE(void)
{
}

void CCargaASE::Crealistas (int Ini, int Fin, int Cara, unsigned int Texture, int Tini, int TFin, BOOL definitive)
{

int temp, i;
temp=ID+NumObyj;
inta, b, c;
if (definitive)
{
if (NumObj==1) ID=ID+1;
else {
glNewList(ID, GL_COMPILE);
for (i=1; i<=NumObyj; i++)
{
a=ID +i;
glCallList(a);
}
glEndList();
Yelse {
glNewList(temp, GL_COMPILE);
if (ConText)
{
glBindTexture(GL_TEXTURE_2D, Texture);
glEnable(GL_TEXTURE_2D);
}
if (ConNorm)
{

}
glBegin(GL_TRIANGLES);
for (i=0; i<=Cara; i++)

if (ConNorm)

{
c=0;
while (NorCar->Devolver (c).ID != c)
{

c++;

}
gINormal3f(NorCar->Devolver (c).VX, NorCar->Devolver (c).VY, NorCar-
>Devolver (c).VZ);

for (a=Ini; a<=Fin; a++)

{ if (Carasli]. VerticeA == Vertex->Devolver (a).ID) break;
} if (Carasli]. VerticeA == Vertex->Devolver (a).ID)
if (ConText) {
for (b=TIni; b<=TFin; b++)
(.1D) break if (TexCarlfi].VerticeA == TexVer->Devolver
. reak;
:}f (TexCarli]. VerticeA == TexVer->Devolver (b).ID)

glTexCoord2f(TexVer->Devolver (b).VX, TexVer->Devolver (b).VY);
}
glVertex3f (Vertex->Devolver(a).VX, Vertex->Devolver(a).VZ,

Vertex->Devolver(a).VY);
}

for (a=Ini; a<=Fin; a++)
if (Carasli]. VerticeB == Vertex->Devolver (a).ID) break;

if (Carasli]. VerticeB == Vertex->Devolver (a).ID)

if (ConText) {
for (b=TIni; b<=TFin; b++)
if (TexCarli]. VerticeB == TexVer->Devolver
(b).ID) break;
}
if (TexCarl[i].VerticeB == TexVer->Devolver (b).ID)

glTexCoord2f(TexVer->Devolver (b).VX, TexVer->Devolver (b).VY);

glVertex3f (Vertex->Devolver(a).VX, Vertex->Devolver(a).VZ,
Vertex->Devolver(a).VY);
}
for (a=Ini; a<=Fin; a++)
{
if (Carasli]. VerticeC == Vertex->Devolver (a).ID) break;

if (Carasli]. VerticeC == Vertex->Devolver (a).ID)

if (ConText) {
for (b=TIni; b<=TFin; b++)
if (TexCar[i].VerticeC == TexVer->Devolver
(b).ID) break;
}
if (TexCar[i].VerticeC == TexVer->Devolver (b).ID)

glTexCoord2f(TexVer->Devolver (b).VX, TexVer->Devolver (b).VY);

}
glVertex3f (Vertex->Devolver(a).VX, Vertex->Devolver(a).VZ,
Vertex->Devolver(a).VY);

}
glEnd();
if (ConText) gIDisable(GL_TEXTURE_2D);
glEndList();
}
}
void CCargaASE::MuestraASE ()
{
glCallList(ID);
}

void CCargaASE::DiNumObj (HWND hwnd)

{
char Num([30];
sprintf(Num, "Numero de objetos: %d", NumObj);
MessageBox(hwnd, Num, "Objetos", NULL);

Explicacién:

Clase vértices:

El constructor de esta clase, al que se le pasa un nimero, inicia un array de vértices con ese nimero. Y pone el contador del vertice
actual a 0.

Existe una funcién miembro a la que se le pasan las coordenadas x, y, z del vertice y un identificador. Esta funcién incrementa el nimero
del vertice actual.

La funcion Devolver devuelve el vertice pedido.

Clase CargaASE

Se basa en un array de vertices y en un array de una estructura llamada ‘caras’. Una cara consta de 3 vertices. Esta clase tiene tres
funciones importantes, la de crear el objeto ASE, la de dibujarlo y una privada en la que coloca todos los vertices, calcula las normales y
hace todos los calculos internos.

También disponemos de una funcién que calcula cuantos vertices tiene la figura y los muestra en un messagebox, mas util al
programador que al usuario.

Los parametros que se le pasan al constructor de esta clase son:

- El nombre del fichero (entre comillas).

- El array de texturas.

- Un vector con el orden de las texturas que aplicaremos a los objetos (si hay varios objetos).
- True o false segln si los objetos estan texturados o no.

- True o false si se calcularan las normales para los objetos.

- Un identificador para el ASE.

Bl Estos son las opciones para exportar un ASE:
 Dptiories de salida ~Tios de obis Tl - Con definicion de textura.
¥ Diefiriicién de malla W Geométicos T - C'°n mater|a|es'~ .
¥ Materiales I Fomds ; 4 - Soélo los geométricos.
ro - 7 Sslids estilica - Normales de la malla.
s dls arimacion ds tansfomacion | | [Camaras
; Mz - Coordenadas de mapeado.
I™ Malla animada B
I™ Configuracién camaradluz animada Precisicn
I Apudantes A o
I™ Uniones de cinematica inversa Bt | 4 =l
rOpciones de mala————— ~S4idade contolador———————————————————
7 Heroies sl Cuadhos por muestia:
J¥ Coordenadas de mapsado ® Usar claves Contoladores: [5 =)
™ Colores de vértice ¢ Conmuestien Objelos anmados: [5 2

Como funciona:

- Indica a sus variables miembro si el programador permitira las texturas y las normales en el objeto.

- Arregla el nimero del identificador para que el usuario no pueda repetirlo, ya que sera el nimero de la display list que usara el
objeto entero (si estd formado por mas objetos creara mas display lists y luego las cargara en la del nimero del identificador).

- Abre el fichero y mira cuantos vertices, normales y caras tiene el objeto para crear los arrays.

- Luego ird buscando dentro de la estructura del ASE los vertices y lo colocara en su objeto de vertices, las texturas, las normales y
las caras.

- Llamara a la funcion que crea las listas de visualizacion para cada objeto del ase, y cuando llegue al final del fichero creara la lista
que englobara a las demas.

- La dltima funcion, lo Gnico que hace es recorrer los arrays de vertices, caras, texturas y normales y llama a las funciones que
dibujan un vertice (el orden lo indica la cara), posicionan la textura para este y llama a las normales.

- Una vez se creen todas las listas sélo habra que llamarlas para que se ejecuten estos comandos y podamos ver el objeto por
pantalla.

Definicién de objeto ASE y texturas
CCargaASE *obj;

TGAFILE Img[2];

unsigned int texture[2];

Carga de texturas

LoadTGAFile ("Modelos/texture.tga", & mg[0]);
LoadTGAFile ("Modelos/texture2.tga", &lmg[1]);

glGenTextures(2, texture);

glBindTexture(GL_TEXTURE_2D, texture[0]);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB, Img[0].imageWidth , Img[0].imageHeight, 0, GL_RGB, GL_UNSIGNED_BYTE,
Img[0].imageData);

glBindTexture(GL_TEXTURE_2D, texture[1]);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);

glTeximage2D(GL_TEXTURE_2D, 0, GL_RGB, Img[1].imageWidth , Img[1].imageHeight, 0, GL_RGB, GL_UNSIGNED_BYTE,
Img[1].imageData);

Definicién del orden de texturas

int OrdnTex[6] = {1,1,0,1,0,1};

Crea el objeto

obj = new CCargaASE("Modelos/statue.ase", texture, OrdnTex, true, true, 1);

Muestra el objeto: obj->MuestraASE ();

	Cargar .ASE’s
	Vertices.h
	Vertices.cpp
	CargaASE.h
	Clase CargaASE
	Definición de objeto ASE y texturas
	Carga de texturas
	Definición del orden de texturas
	Crea el objeto

