
Buffers

Ed Angel
Professor of Computer Science,

Electrical and Computer
Engineering, and Media Arts

University of New Mexico

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Objectives

• Introduce additional OpenGL buffers
•Learn to read and write buffers
•Learn to use blending

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Buffer

Define a buffer by its spatial resolution (n x m) and
its depth (or precision) k, the number of bits/pixel

pixel

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

OpenGL Frame Buffer

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

OpenGL Buffers

•Color buffers can be displayed
- Front
- Back
- Auxiliary
- Overlay

•Depth
•Accumulation

- High resolution buffer
•Stencil

- Holds masks

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Writing in Buffers

• Conceptually, we can consider all of memory as a
large two-dimensional array of pixels

• We read and write rectangular block of pixels
- Bit block transfer (bitblt) operations

• The frame buffer is part of this memory

frame buffer
(destination)

writing into frame buffer

sourcememory

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Writing Model

Read destination pixel before writing source

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Bit Writing Modes

• Source and destination bits are combined bitwise
• 16 possible functions (one per column in table)

replace OR
XOR

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

XOR mode

• Recall from Chapter 3 that we can use XOR by
enabling logic operations and selecting the XOR
write mode

• XOR is especially useful for swapping blocks of
memory such as menus that are stored off screen

If S represents screen and M represents a menu
the sequence
 S ← S ⊕ M
 M ← S ⊕ M
 S ← S ⊕ M
swaps the S and M

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

The Pixel Pipeline

•OpenGL has a separate pipeline for pixels
- Writing pixels involves

• Moving pixels from processor memory to the frame buffer
• Format conversions
• Mapping, Lookups, Tests

- Reading pixels
• Format conversion

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Raster Position

•OpenGL maintains a raster position as
part of the state

•Set by glRasterPos*()
-glRasterPos3f(x, y, z);

•The raster position is a geometric entity
- Passes through geometric pipeline
- Eventually yields a 2D position in screen

coordinates
- This position in the frame buffer is where the

next raster primitive is drawn

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Buffer Selection

• OpenGL can draw into or read from any of the color
buffers (front, back, auxiliary)

• Default to the back buffer
• Change with glDrawBuffer and glReadBuffer
• Note that format of the pixels in the frame buffer is

different from that of processor memory and these
two types of memory reside in different places

- Need packing and unpacking
- Drawing and reading can be slow

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Bitmaps

•OpenGL treats 1-bit pixels (bitmaps)
differently from multi-bit pixels (pixelmaps)

•Bitmaps are masks that determine if the
corresponding pixel in the frame buffer is
drawn with the present raster color

- 0 ⇒ color unchanged
- 1 ⇒ color changed based on writing mode

•Bitmaps are useful for raster text
- GLUT font: GLUT_BIT_MAP_8_BY_13

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Raster Color

•Same as drawing color set by glColor*()
•Fixed by last call to glRasterPos*()

•Geometry drawn in blue
•Ones in bitmap use a drawing color of red

glColor3f(1.0, 0.0, 0.0);
glRasterPos3f(x, y, z);
glColor3f(0.0, 0.0, 1.0);
glBitmap(…….
glBegin(GL_LINES);
 glVertex3f(…..)

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Drawing Bitmaps

glBitmap(width, height, x0, y0, xi, yi, bitmap)

first raster position

second raster position

offset from raster
 position

increments in
raster
position after
bitmap drawn

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Example: Checker Board

GLubyte wb[2] = {0 x 00, 0 x ff};
GLubyte check[512];
int i, j;
for(i=0; i<64; i++) for (j=0; j<64, j++)
 check[i*8+j] = wb[(i/8+j)%2];

glBitmap(64, 64, 0.0, 0.0, 0.0, 0.0, check);

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Pixel Maps

•OpenGL works with rectangular arrays of
pixels called pixel maps or images

•Pixels are in one byte (8 bit) chunks
- Luminance (gray scale) images 1 byte/pixel
- RGB 3 bytes/pixel

•Three functions
- Draw pixels: processor memory to frame buffer
- Read pixels: frame buffer to processor memory
- Copy pixels: frame buffer to frame buffer

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

OpenGL Pixel Functions

glReadPixels(x,y,width,height,format,type,myimage)

start pixel in frame buffer size
type of image

type of pixels
pointer to processor
 memory

GLubyte myimage[512][512][3];
glReadPixels(0,0, 512, 512, GL_RGB,
 GL_UNSIGNED_BYTE, myimage);

glDrawPixels(width,height,format,type,myimage)

starts at raster position

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Image Formats

•We often work with images in a standard
format (JPEG, TIFF, GIF)

•How do we read/write such images with
OpenGL?

•No support in OpenGL
- OpenGL knows nothing of image formats
- Some code available on Web
- Can write readers/writers for some simple

formats in OpenGL

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Displaying a PPM Image

•PPM is a very simple format
•Each image file consists of a header
followed by all the pixel data

•Header
P3
comment 1
comment 2
 .
#comment n
rows columns maxvalue
pixels

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Reading the Header

FILE *fd;
int k, nm;
char c;
int i;
char b[100];
float s;
int red, green, blue;
printf("enter file name\n");
scanf("%s", b);
fd = fopen(b, "r");
fscanf(fd,"%[^\n] ",b);
if(b[0]!='P'|| b[1] != '3'){

printf("%s is not a PPM file!\n", b);
exit(0);

}
printf("%s is a PPM file\n",b);

check for “P3”
in first line

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Reading the Header (cont)

fscanf(fd, "%c",&c);
while(c == '#')
{

fscanf(fd, "%[^\n] ", b);
printf("%s\n",b);
fscanf(fd, "%c",&c);

}
ungetc(c,fd);

skip over comments by
looking for # in first column

23Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Reading the Data

fscanf(fd, "%d %d %d", &n, &m, &k);
printf("%d rows %d columns max value= %d\n",n,m,k);

nm = n*m;
image=malloc(3*sizeof(GLuint)*nm);
s=255./k;

for(i=0;i<nm;i++)
{

fscanf(fd,"%d %d %d",&red, &green, &blue);
image[3*nm-3*i-3]=red;
image[3*nm-3*i-2]=green;
image[3*nm-3*i-1]=blue;

}

scale factor

24Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

Scaling the Image Data

We can scale the image in the pipeline

glPixelTransferf(GL_RED_SCALE, s);
glPixelTransferf(GL_GREEN_SCALE, s);
glPixelTransferf(GL_BLUE_SCALE, s);

We may have to swap bytes when we go from
processor memory to the frame buffer depending on
the processor. If so, we can use

glPixelStorei(GL_UNPACK_SWAP_BYTES,GL_TRUE);

25Angel: Interactive Computer Graphics 4E © Addison-Wesley 2004

The display callback

void display()
{
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos2i(0,0);

 glDrawPixels(n,m,GL_RGB,
 GL_UNSIGNED_INT, image);
glFlush();

}

