- DirectX8

En cualquier aplicacién de DirectX que programemos debemos incluir la libreria dxguid.lib.
En aplicaciones con Directinput: dinput8.lib y dinput.h
En aplicaciones con DirectMusic: dmusicc.h y dmusici.h

- Directinput
- Usar Directinput

Para usar DI necesitamos seguir los siguientes pasos (Con * son opcionales):

Lo primero serd inicializar Directlnput y luego afiadir dispositivos de la siguiente forma:
1. Enumerar los dispositivos *

Crear dispositivos

Verificar las capacidades de los dispositivos *

Enumerar objetos *

Adquirir el formato de los datos

Entrar en nivel coperativo de windows

Modificar las propiedades de los dispositivos *

Adquirir dispositivo

ONOOAWN

Las variables que usaremos seran:

HRESULT result;
LPDIRECTINPUTS8 pDirectinput;
LPDIRECTINPUTDEVICES8 IpDIDEVICES;
UCHAR buffer[256];
Inicializar DI

if (FAILED(result = Directinput8Create(hinstance, DIRECTINPUT_VERSION, IID_|IDirectinput8, (void **) &pDirectinput, NULL)))

MessageBox(hwnd, "Error creando DI", NULL, NULL);
}

result = Directinput8Create(hinstance, DIRECTINPUT_VERSION, IID_IDirectinput8, (void **) &pDirectinput, NULL)
hinstance es la instancia del programa

DIRECTINPUT_VERSION es una constante dentro del dinput.h que indica la versién de Directinput usada
pDirectinput es un puntero necesario a las funciones de Directinput.

Crear dispositivos

result = pDirectinput->CreateDevice(GUID_SysKeyboard, &pDIDEVICES8, NULL);

De esta forma creamos los dispositivos. El primer parametro puede ser GUID_SysKeyboard o GUID_SysMouse. Y le pasamos el
dispositivo donde lo crearemos.

Adquirir el formato de datos
result = IpDIDEVICE8->SetDataFormat(&c_dfDIKeyboard);

c_dfDIKeyboard Array de caracteres de 256 que representa a cada tecla.

c_dfDIMouse Una estructura con tres longs para las coordenadas del raton (x,y,z) y un array de 4 bytes que indica el boton
clicado.

c_dfDIlJoystick Otra estructura para los joysticks.

Entrar en el nivel cooperativo

result = IpDIDEVICE8->SetCooperativeLevel(hwnd, DISCL_BACKGROUND);

Indica de qué forma usaremos el dispositivo, necesitamos pasarle el HWND de la ventana y las otras opciones seran:
DISCL_BACKGROUND, DISCL_EXECUTIVE, DISCL_FOREGROUND, DISCL_NONEXCLUSIVE y DISCL_NOWINKEY (que desactiva
la tecla de windows).

Adquirir dispositivo
if (FAILED(result = IpDIDEVICE8->Acquire())) MessageBox(hwnd, "Error adquiriendo dispositivo DI", NULL, NULL);
IpDIDEVICES8->Acquire() Esta funcién adquiere el dispositivo.

Coger la tecla apretada

Podemos hacer un define de la siguiente forma antes de proseguir:

#define KEYDOWN(name, key) (name[key] & 0x80)

De esta forma cuando llamemos a la siguiente funcién (dentro del bucle principal del programa) la sintaxis ser4 mas sencilla:

result = IpDIDEVICE8->GetDeviceState(sizeof(buffer),(LPVOID) &buffer);

Con GetDeviceState lo que hacemos es coger el estado del dispositivo creado, para meterlo en un array de x posiciones (con el tamafio
indicado en el primer parametro).

Luego podremos hacer esto:

if (KEYDOWN(buffer,DIK_RIGHT)) xpos+=0.1;

* A veces puede ser que perdamos el control del dispositivo y entonces el programa fallaria, para comprovar si ain lo tenemos y arreglar
el error si no, haremos:
if (FAILED(IpDIDEVICE8->GetDeviceState(sizeof(buffer),(LPVOI) &buffer)) IpDIDEVICES8->Acquire();

- Mapa de caracteres en Directinput

Constant Hex Description
DIK_ESCAPE 0x01 Escape
DIK_1 0x02 1

DIK_2 0x03 2

DIK_3 0x04 3

DIK_4 0x05 4

DIK_5 0x06 5

DIK_6 0x07 6

DIK_7 0x08 7

DIK_8 0x09 8

DIK_9 0x0A 9

DIK_0 0x0B 0
DIK_MINUS 0x0C - on main keyboard
DIK_EQUALS 0x0D =
DIK_BACKOX0E Backspace

DIK_TAB O0xOF Tab

DIK_Q 0x10 Q

DIK_W
DIK_E

DIK_R

DIK_T

DIK_Y

DIK_U

DIK_I

DIK_O

DIK_P
DIK_LBRACKET
DIK_RBRACKET
DIK_RETURN
DIK_LCONTROL
DIK_A

DIK_S

DIK_D

DIK_F

DIK_G

DIK_H

DIK_J

DIK_K

DIK_L
DIK_SEMICOLON
DIK_APOSTROPHE
DIK_GRAVE
DIK_LSHIFT
DIK_BACKSLASH
DIK_Z 0x2C
DIK_X 0x2D
DIK_.C Ox2E
DIK_V Ox2F
DIK_B 0x30
DIK_N 0x31
DIK_M 0x32
DIK_COMMA
DIK_PERIOD
DIK_SLASH
DIK_RSHIFT
DIK_MULTIPLY
DIK_LMENU
DIK_SPACE
DIK_CAPITAL
DIK_F1 0x3B
DIK_F2 0x3C
DIK_F3 0x3D
DIK_F4 Ox3E
DIK_F5 Ox3F
DIK_F6 0x40
DIK_F7 0x41
DIK_F8 0x42
DIK_F9 0x43
DIK_F10 0x44
DIK_NUMLOCK
DIK_SCROLL
DIK_NUMPAD7
DIK_NUMPADS8
DIK_NUMPAD9
DIK_SUBTRACT
DIK_NUMPAD4
DIK_NUMPAD5
DIK_NUMPAD6
DIK_ADD OX4E
DIK_NUMPAD1
DIK_NUMPAD2
DIK_NUMPAD3
DIK_NUMPADO
DIK_DECIMAL
DIK_F11 0x57
DIK_F12 0x58
DIK_F13 0x64
DIK_F14 0x65
DIK_F15 0x66
DIK_KANAOX70
DIK_CONVERT
DIK_NOCONVERT
DIK_YEN 0x7D

DIK_NUMPADEQUALS

DIK_CIRCUMFLEX
DIK_AT 0x91
DIK_COLON

DIK_UNDERLINE
DIK_KANJI

DIK_STOP 0x95
DIK_AX 0x96
DIK_UNLABELED

DIK_NUMPADENTER 0x9C

0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
O0x1A
0x1B
0x1C
0x1D
OX1E
Ox1F
0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28 !

0x29 Accent grave
O0x2A Left shift
0x2B \

——Tvo—-c<-Hmms

Enter on main keyboard
Left Ctrl

TCTCXSCIEOTO0n>

ITZm<OX>

0x33 ,

0x34 . on main keyboard
0x35 / on main keyboard
0x36 Right shift

0x37 * on numeric keypad
0x38 Left Alt

0x39 Space bar

0x3A Caps Lock

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
0x45
0x46
0x47
0x48
0x49
Ox4A
0x4B

Num Lock

Scroll Lock

7 on numeric keypad
8 on numeric keypad
9 on numeric keypad
- on numeric keypad
4 on numeric keypad
0x4C 5 on numeric keypad
0x4D 6 on numeric keypad
+ on numeric keypad

Ox4F 1 on numeric keypad
0x50 2 on numeric keypad
0x51 3 on numeric keypad
0x52 0 on numeric keypad
0x53 . on numeric keypad
F11

F12

(NEC PC98)

(NEC PC98)

(NEC PC98)

(Japanese keyboard)
0x79 (Japanese keyboard)
0x7B (Japanese keyboard)
(Japanese keyboard)
0x8D

0x90 (Japanese keyboard)
(NEC PC98)

0x92 (NEC PC98)

0x93 (NEC PC98)

0x94 (Japanese keyboard)
(NEC PC98)

(Japan AX)

0x97 (J3100)

Enter on numeric keypad

= on numeric keypad (NEC PC98)

DIK_RCONTROL 0x9D Right Ctrl

DIK_NUMPADCOMMA 0xB3 , on numeric keypad (NEC PC98)
DIK_DIVIDE 0xB5 / on numeric keypad
DIK_SYSRQ 0xB7 SysRq

DIK_RMENU 0xB8 Right Alt

DIK_PAUSE 0xC5 Pause

DIK_HOME 0xC7 Home on arrow keypad
DIK_UP 0xC8 Up arrow on arrow keypad

DIK_PRIOR 0xC9 Page Up on arrow keypad
DIK_LEFT 0xCB Left arrow on arrow keypad

DIK_RIGHT 0xCD Right arrow on arrow keypad
DIK_END OxCF End on arrow keypad

DIK_DOWN 0xDO Down arrow on arrow keypad
DIK_NEXT 0xD1 Page Down on arrow keypad
DIK_INSERT 0xD2 Insert on arrow keypad
DIK_DELETE 0xD3 Delete on arrow keypad
DIK_LWIN 0xDB Left Windows key

DIK_RWINOXxDC Right Windows key
DIK_APPS 0xDD App menu key
DIK_POWER OxDE Power
DIK_SLEEP O0xDF Sleep

Alternate names for keys, to facilitate transition from DOS
DIK_BACKSPACE DIK_BACKBackspace

DIK_NUMPADSTAR DIK_MULTIPLY * on numeric keypad
DIK_LALT DIK_LMENU Left Alt

DIK_CAPSLOCK DIK_CAPITAL CapsLock
DIK_NUMPADMINUS DIK_SUBTRACT - on numeric keypad
DIK_NUMPADPLUS DIK_ADD + on numeric keypad
DIK_NUMPADPERIOD DIK_DECIMAL . on numeric keypad
DIK_NUMPADSLASH DIK_DIVIDE / on numeric keypad
DIK_RALT DIK_RMENU Right Alt

DIK_UPARROW DIK_UP Up arrow on arrow keypad

DIK_PGUP DIK_PRIOR Page up on arrow keypad
DIK_LEFTARROW DIK_LEFT Left arrow on arrow keypad
DIK_RIGHTARROW DIK_RIGHT Right arrow on arrow keypad
DIK_DOWNARROW DIK_DOWN Down arrow on arrow keypad
DIK_PGDN DIK_NEXT Page Down on arrow keypad

- Una clase gue controle teclado y ratén

cDI.h
#include <dinput.h>

#pragma comment(lib, "dxguid.lib")
#pragma comment(lib, "dinput8.lib")

#define KEYDOWN(name, key) (name[key] & 0x80)

struct STMouse{
float x;
floaty;
BOOL button[3];
BOOL rueda[2];
h

class cDI
{
public:
cDI(HINSTANCE hinstance, HWND hwnd);
IniMous();
IniKeyb();
UCHAR *LookKeyb();
STMouse LookMous();
STMouse LookMouZ(float rango, float anc, float alt, float vel, bool top);
private:
HWND hwnd;
LPDIRECTINPUTS8 pDirectinput;
LPDIRECTINPUTDEVICES8 Keyb, Mous;
UCHAR buffer[256];
DIMOUSESTATE2 MousStat;
STMouse MousDat;
STMouse MousTemp;
int MovZz;
BOOL MousUpdate();
BOOL KeybUpdate();
Button(bool temp);
h

cDl.cpp
#include "cdi.h"

cDI::cDI(HINSTANCE hinstance, HWND hwnd)
{

this->hwnd = hWnd;

this->MousTemp.x=0;

this->MousTemp.y=0;

this->MovZ=0;

if (FAILED(Directlnput8Create(hinstance, DIRECTINPUT_VERSION, IID_IDirectinput8, (void **) &pDirectinput, NULL)))

MessageBox(hwnd, "Error creando DI", NULL, NULL);

}
}
cDl::IniKeyb()
{
pDirectinput->CreateDevice(GUID_SysKeyboard, &Keyb, NULL);
Keyb->SetDataFormat(&c_dfDIKeyboard);
Keyb->SetCooperativeLevel(hwnd, DISCL_BACKGROUND | DISCL_NONEXCLUSIVE);
if (FAILED(Keyb->Acquire()))
MessageBox(hwnd, "Error adquiriendo dispositivo DI 01", NULL, NULL);
}
}
cDl::IniMous ()
{
pDirectinput->CreateDevice(GUID_SysMouse, &Mous, NULL);
Mous->SetDataFormat(&c_dfDIMouse?2);
Mous->SetCooperativeLevel(hwnd, DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);
if (FAILED(Mous->Acquire()))
{
MessageBox(hwnd, "Error adquiriendo dispositivo DI 02", NULL, NULL);
}
}
UCHAR *cDI::LookKeyb ()
{
if (KeybUpdate()) Keyb->GetDeviceState(sizeof(buffer),(LPVOID) &buffer);
return buffer;
}
STMouse cDI::LookMous ()
{
if (MousUpdate())
{
Mous->GetDeviceState (sizeof(DIMOUSESTATEZ2), &MousStat);
MousDat.x = MousStat.IX;
MousDat.y = MousStat.lY;
this->Button(false);
return MousDat;
}
BOOL cDI::MousUpdate ()
{
if (FAILED(Mous->Acquire())) return FALSE;
return TRUE;
}
BOOL cDI::KeybUpdate()
{
if (FAILED(Keyb->Acquire())) return FALSE;
return TRUE;
}
STMouse cDIl::LookMouZ (float rango, float anc, float alt, float vel, bool top)
{

float MedX, MedY;

if (MousUpdate()) {
Mous->GetDeviceState (sizeof(DIMOUSESTATE2), &MousStat);
MousDat.x = MousStat.IX;
MousDat.y = MousStat.lY;

MedX=(anc/rango)*vel;
MedY=(alt/rango)*vel;
MousTemp.x += MousDat.x*MedX;
MousTemp.y -= MousDat.y*MedY;

if (top) {
if (MousTemp.x<-rango) MousTemp.x=-rango;
if (MousTemp.x>rango) MousTemp.x=rango;
if (MousTemp.y>rango) MousTemp.y=rango;
if (MousTemp.y<-rango) MousTemp.y=-rango;
}

this->Button(true);

return MousTemp;

}

cDI::Button (bool temp)

BOOL BoT[5]={0,0,0,0,0};

if (MousStat.rgbButtons[0]!=0) BoT[0]=1;

if (MousStat.rgbButtons[1]!=0) BoT[1]=1;

if (MousStat.rgbButtons[2]!=0) BoT[2]=1;

if (MousStat.IZ>0) BoT[3]=1;

if (MousStat.lZ<0) BoT[4]=1;

if (temp) {
MousTemp.button[0]=BoT[0];
MousTemp.button[1]=BoT[1];
MousTemp.button[2]=BoT[2];
MousTemp.rueda[0]=BoT[3];
MousTemp.rueda[1]=BoT[4];

else {
MousDat.button[0]=BoT[0];
MousDat.button[1]=BoT[1];
MousDat.button[2]=BoTI[2];
MousDat.rueda[0]=BoT[3];
MousDat.rueda[1]=BoT[4];

En el cDI.h encontramos las definiciones para las variables y funciones del cDl.cpp:

cDI(HINSTANCE hinstance, HWND hwnd);
Para la creacién de un objeto DI.
IniMous();
Para iniciar el mouse.
IniKeyb();
Para inicializar el teclado.
UCHAR *LookKeyb();
Para recoger las teclas apretadas del teclado.
STMouse LookMous();
Para calcular posicién del mouse.
STMouse LookMouZ(float rango, float anc, float alt, float vel, bool top);
Para calcular posicién relativa del mouse. Pasandole un rango (ya que lo toma como si el punto 0, O estubiese en el centro
de la ventana), un alto y un ancho, una velocidad y si tiene limites en esa altura y anchura, él calculara la posicién del ratén segun estos

parametros.
HWND hwnd;

El HWND de la ventana principal, lo coge sélo al iniciar el objeto.
LPDIRECTINPUTS8 pDirectinput;

Un puntero al objeto DI.
LPDIRECTINPUTDEVICES8 Keyb, Mous;

Objetos DI.
UCHAR buffer[256];

Un buffer que rellenara el teclado.
DIMOUSESTATE2 MousStat;

Donde se calculara la posicion del raton.
STMouse MousDat;

Para tener las coordenadas del raton.
STMouse MousTemp;

Para tener las coordenadas relativas del raton.
int MovZz;

Un indicador para el movimiento de la rueda.
BOOL MousUpdate();

Para actualizar el ratén y no perder asi el dispositivo.
BOOL KeybUpdate();

Para actualizar el teclado.
Button(bool temp);

Para comprovar qué botones del ratén se han pulsado.

Una estructura de ratén (STMouse) tiene:

Un float para la posicién x y otro para la y.

Tres booleanas que indican si se ha pulsado un botén o no.

Dos booleanas para el movimiento de la rueda. La primera representa hacia arriba y la segunda hacia abajo.

Y para usarla:
cDI *DI = new cDI(hInstance, hwnd);
DI->IniKeyb ();
DI->IniMous ();
Creamos un objeto DI, y un teclado y un ratén.
Luego, dentro del bucle principal del programa:
Key=DI->LookKeyh();
Raton=DI->LookMouZ (RangoXYZ, NewANC, NewALT, 0.05, true);
if (KEYDOWN(KB,DIK_RIGHT)) xpos+=0.1;
if (Mous.button[0]) color++;
if (Mous.rueda[0]) rueda++;

- DirectMusic

DirectMusic es un objeto COM del DirectX, por lo tanto, a diferencia del Directinput necesitaremos inicializarlo: Colnitialize(NULL);
Tres son los objetos que necesitamos para usar de forma basica el DirectMusic:

IDirectMusicPerformance8* El objeto principal del Direct Audio.
IDirectMusicLoader8* El cargador del DirectMusic
IDirectMusicSegment8* El sonido

Usaremos:

IDirectMusicPerformance8* dmusicPerformance = NULL;
IDirectMusicLoader8* dmusicLoader = NULL;
IDirectMusicSegment8* dmusicSegment = NULL;

Crear el performance y el loader

CoCreatelnstance(CLSID_DirectMusicPerformance, NULL, CLSCTX_INPROC,
1ID_IDirectMusicPerformance8, (void**)&dmusicPerformance);
De esta forma obtienes la interfaz del permormance.

dmusicPerformance->InitAudio(NULL, NULL, NULL, DMUS_APATH_SHARED_STEREOPLUSREVERB,
64, DMUS_AUDIOF_ALL, NULL);
Inicializa el audio. Sus pardmetros son: Puntero a la interfaz del directmusic (no necesario), al del direct audio (no necesario), el hwnd, el
tipo de audiopath por defecto, numero de canales, caracteristicas del sintetizador y los pardmetros de este (NULL = por defecto).

CoCreatelnstance(CLSID_DirectMusicLoader, NULL, CLSCTX_INPROC,
1ID_IDirectMusicLoader8, (void**)&dmusicLoader);

Crear y cargar el segmento

El path por defecto

No es necesario, pero si tubiesemos todos los archivos en un mismo path, con esto, no necesitariamos pasar toda la ruta.
WCHAR searchPath[MAX_PATH];

Necesitamos que el path no sea char, sino WCHAR.
MultiByteToWideChar(CP_ACP, 0, "\data", -1, searchPath, MAX_PATH);

Con esta funcién pasamos “\data” (que es el path que usaremos) a WCHAR.
dmusicLoader->SetSearchDirectory (GUID_DirectMusicAllTypes, searchPath, FALSE);

Y lo definimos como path por defecto.

Respecto al segmento
WCHAR filename[MAX_PATH];

Necesitamos que el nombre del archivo no sea char, sino WCHAR.
MultiByteToWideChar(CP_ACP, 0, file, -1, filename, MAX_PATH);

Con esta funcién pasamos “file” (que es un char) a WCHAR.
dmusicLoader->LoadObjectFromFile(CLSID_DirectMusicSegment, IID_IDirectMusicSegment8,

filename, (void**)&dmusicSegment);

Cargamos el archivo sobre el loader y el segmento.
dmusicSegment->Download(dmusicPerformance);

Preparamos el segmento para recibir los datos.

Manipular el sonido

Que suene

dmusicPerformance->PlaySegmentEx (dmusicSegment, NULL, NULL, 0,0, NULL, NULL, NULL);
Parametros: Segmento con el archivo cargado, NULL, el segmento de transicién, flags del metodo de comportamiento (¢,?), el momento
en que empieza a reproducirse, estado del segmento, cuando parara y el path en el que esta (NULL es el de por defecto).

Pararlo
dmusicPerformance->StopEx(dmusicSegment, 0,0);

Parametros: El segmento, el momento en el que para, 0.
dmusicPerformance->Stop(dmusicSegment, NULL, 0, 0);

Parametros: El segmento (NULL son todos), NULL, el momento en el que para (0 inmediatamente).

Esta sonando?
dmusicPerformance->IsPlaying (dmusicSegment, NULL)
Si el segmento introducido esta sonando devolvera: S_OK.

Que se repita
dmusicSegment->SetRepeats(Loops);
Loops: Las veces que se repetird ese segmento.

Y Cerrar DirectMusic

Las funciones usadas para ello son:
dmusicPerformance->CloseDown();
dmusicLoader->Release ();
dmusicPerformance->Release();
dmusicSegment->Release();
CoUninitialize();

Un ejemplo:

Codigo

Llamadas

#i ncl ude <dnusi cc. h>
#i ncl ude <dnusi ci . h>

#pragma comment (i b, "dxguid.lib")

I D rect Musi cPer f or mance8* dnusi cPer f or mance = NULL;
I Di rect Misi cLoader 8* dnusi cLoader = NULL;
| Di rect Musi cSegnent 8* dnusi cSegment = NULL;

voi d I ni DMusi c(HWD hwnd)

{
WCHAR sear chPat h[MAX_PATH| ;
Colnitialize(NULL);

CoOr eat el nst ance(CLSI D_Di r ect Musi cPer f or mance, NULL, CLSCTX_| NPROC,
11 D_I D rect Musi cPer f or mance8, (voi d**) &nusi cPerf or mance) ;

dnusi cPer f or mance- >I ni t Audi o(NULL, NULL, NULL, DMJUS_APATH SHARED STERECPLUSREVERB,
64, DVUS_AUDI OF_ALL, NULL);

CoCr eat el nst ance(CLSI D_Di rect Musi cLoader, NULL, CLSCTX_ | NPRCC,
11 D_I D rect Musi cLoader 8, (voi d**) &nusi cLoader);

Ml ti Byt eTow deChar (CP_ACP, 0, "\data", -1, searchPath, NMAX PATH);
dnusi cLoader - >Set Sear chDi rectory (GU D_Direct Misi cAl | Types, searchPath, FALSE);

}
voi d LoadWbMusi c(char* file)
{
WCHAR fi | ename[MAX_PATH] ;
Ml ti Byt eTow deChar (CP_ACP, 0, file, -1, filenane, MAX PATH);
dnusi cLoader - >LoadChj ect Fronfi | e(CLSI D_Di r ect Musi cSegnent, |1 D_I Di rect Misi cSegrent 8,
filenane, (void**)&dnusicSegnent);
dnusi cSegnent - >Downl oad(dnusi cPer f or mance) ;
}
void Play()
{
dnusi cPer f or mance- >Pl aySegnent Ex (dnusi cSegnent, NULL, NULL, 0,0, NULL, NULL, NULL);
}
void Stop()
{
dnusi cPer f or mance- >St opEx(dnusi cSegnent, 0, 0);
}

?ool Suena()

if (dnusicPerformance->IsPl aying (dnusicSegnent, NULL) == S K)
return true;

el se
return fal se;
}
void QraVez()
{
static int Loops = 1;
Loops ++;
) dnusi cSegnent - >Set Repeat s(Loops) ;
voi d EndDVusc()
{
dnusi cPer f or mance- >0 oseDown() ;
dnusi cLoader - >Rel ease ();
dnusi cPer f or mance- >Rel ease() ;
dnusi cSegnent - >Rel ease() ;
CoUninitialize();
}
case VK| :
Post Qui t Message (0);
break;
case VK_R GHT:
Play();
br eak;
case VK_LEFT:
Stop();
br eak;
case VK_DOM:
if (Suena())
MessageBox(hwid, "ESTA SONANDO', NULL, NULL);
el se
MessageBox(hwid, "NO SUENA NADA", NULL, NULL);
br eak;
case VK _UP:

Qravez();

