
· DirectX8

En cualquier aplicación de DirectX que programemos debemos incluir la librería dxguid.lib.
En aplicaciones con DirectInput: dinput8.lib y dinput.h
En aplicaciones con DirectMusic: dmusicc.h y dmusici.h

· DirectInput

· Usar DirectInput

Para usar DI necesitamos seguir los siguientes pasos (Con * son opcionales):
Lo primero será inicializar DirectInput y luego añadir dispositivos de la siguiente forma:
1. Enumerar los dispositivos *
2. Crear dispositivos
3. Verificar las capacidades de los dispositivos *
4. Enumerar objetos *
5. Adquirir el formato de los datos
6. Entrar en nivel coperativo de windows
7. Modificar las propiedades de los dispositivos *
8. Adquirir dispositivo

Las variables que usaremos serán:
HRESULT result;
LPDIRECTINPUT8 pDirectInput;
LPDIRECTINPUTDEVICE8 lpDIDEVICE8;
UCHAR buffer[256];

Inicializar DI
if (FAILED(result = DirectInput8Create(hInstance, DIRECTINPUT_VERSION, IID_IDirectInput8, (void **) &pDirectInput, NULL)))

{
MessageBox(hwnd, "Error creando DI", NULL, NULL);

}

result = DirectInput8Create(hInstance, DIRECTINPUT_VERSION, IID_IDirectInput8, (void **) &pDirectInput, NULL)
hInstance es la instancia del programa
DIRECTINPUT_VERSION es una constante dentro del dinput.h que indica la versión de DirectInput usada
pDirectInput es un puntero necesario a las funciones de DirectInput.

Crear dispositivos
result = pDirectInput->CreateDevice(GUID_SysKeyboard, &lpDIDEVICE8, NULL);
De esta forma creamos los dispositivos. El primer parámetro puede ser GUID_SysKeyboard o GUID_SysMouse. Y le pasamos el
dispositivo donde lo crearemos.

Adquirir el formato de datos
result = lpDIDEVICE8->SetDataFormat(&c_dfDIKeyboard);
c_dfDIKeyboard Array de caracteres de 256 que representa a cada tecla.
c_dfDIMouse Una estructura con tres longs para las coordenadas del ratón (x,y,z) y un array de 4 bytes que indica el botón
clicado.
c_dfDIJoystick Otra estructura para los joysticks.

Entrar en el nivel cooperativo
result = lpDIDEVICE8->SetCooperativeLevel(hwnd, DISCL_BACKGROUND);
Indica de qué forma usaremos el dispositivo, necesitamos pasarle el HWND de la ventana y las otras opciones serán:
DISCL_BACKGROUND, DISCL_EXECUTIVE, DISCL_FOREGROUND, DISCL_NONEXCLUSIVE y DISCL_NOWINKEY (que desactiva
la tecla de windows).

Adquirir dispositivo
if (FAILED(result = lpDIDEVICE8->Acquire())) MessageBox(hwnd, "Error adquiriendo dispositivo DI", NULL, NULL);
lpDIDEVICE8->Acquire() Esta función adquiere el dispositivo.

Coger la tecla apretada
Podemos hacer un define de la siguiente forma antes de proseguir:
#define KEYDOWN(name, key) (name[key] & 0x80)
De esta forma cuando llamemos a la siguiente función (dentro del bucle principal del programa) la sintaxis será más sencilla:
result = lpDIDEVICE8->GetDeviceState(sizeof(buffer),(LPVOID) &buffer);
Con GetDeviceState lo que hacemos es coger el estado del dispositivo creado, para meterlo en un array de x posiciones (con el tamaño
indicado en el primer parámetro).
Luego podremos hacer esto:
if (KEYDOWN(buffer,DIK_RIGHT)) xpos+=0.1;

* A veces puede ser que perdamos el control del dispositivo y entonces el programa fallaría, para comprovar si aún lo tenemos y arreglar
el error si no, haremos:
if (FAILED(lpDIDEVICE8->GetDeviceState(sizeof(buffer),(LPVOI) &buffer)) lpDIDEVICE8->Acquire();

· Mapa de caracteres en DirectInput
Constant Hex Description
DIK_ESCAPE 0x01 Escape
DIK_1 0x02 1
DIK_2 0x03 2
DIK_3 0x04 3
DIK_4 0x05 4
DIK_5 0x06 5
DIK_6 0x07 6
DIK_7 0x08 7
DIK_8 0x09 8
DIK_9 0x0A 9
DIK_0 0x0B 0
DIK_MINUS 0x0C - on main keyboard
DIK_EQUALS 0x0D =
DIK_BACK0x0E Backspace
DIK_TAB 0x0F Tab
DIK_Q 0x10 Q

DIK_W 0x11 W
DIK_E 0x12 E
DIK_R 0x13 R
DIK_T 0x14 T
DIK_Y 0x15 Y
DIK_U 0x16 U
DIK_I 0x17 I
DIK_O 0x18 O
DIK_P 0x19 P
DIK_LBRACKET 0x1A [
DIK_RBRACKET 0x1B]
DIK_RETURN 0x1C Enter on main keyboard
DIK_LCONTROL 0x1D Left Ctrl
DIK_A 0x1E A
DIK_S 0x1F S
DIK_D 0x20 D
DIK_F 0x21 F
DIK_G 0x22 G
DIK_H 0x23 H
DIK_J 0x24 J
DIK_K 0x25 K
DIK_L 0x26 L
DIK_SEMICOLON 0x27 ;
DIK_APOSTROPHE 0x28 '
DIK_GRAVE 0x29 Accent grave
DIK_LSHIFT 0x2A Left shift
DIK_BACKSLASH 0x2B \
DIK_Z 0x2C A
DIK_X 0x2D X
DIK_C 0x2E C
DIK_V 0x2F V
DIK_B 0x30 B
DIK_N 0x31 N
DIK_M 0x32 M
DIK_COMMA 0x33 ,
DIK_PERIOD 0x34 . on main keyboard
DIK_SLASH 0x35 / on main keyboard
DIK_RSHIFT 0x36 Right shift
DIK_MULTIPLY 0x37 * on numeric keypad
DIK_LMENU 0x38 Left Alt
DIK_SPACE 0x39 Space bar
DIK_CAPITAL 0x3A Caps Lock
DIK_F1 0x3B F1
DIK_F2 0x3C F2
DIK_F3 0x3D F3
DIK_F4 0x3E F4
DIK_F5 0x3F F5
DIK_F6 0x40 F6
DIK_F7 0x41 F7
DIK_F8 0x42 F8
DIK_F9 0x43 F9
DIK_F10 0x44 F10
DIK_NUMLOCK 0x45 Num Lock
DIK_SCROLL 0x46 Scroll Lock
DIK_NUMPAD7 0x47 7 on numeric keypad
DIK_NUMPAD8 0x48 8 on numeric keypad
DIK_NUMPAD9 0x49 9 on numeric keypad
DIK_SUBTRACT 0x4A - on numeric keypad
DIK_NUMPAD4 0x4B 4 on numeric keypad
DIK_NUMPAD5 0x4C 5 on numeric keypad
DIK_NUMPAD6 0x4D 6 on numeric keypad
DIK_ADD 0x4E + on numeric keypad
DIK_NUMPAD1 0x4F 1 on numeric keypad
DIK_NUMPAD2 0x50 2 on numeric keypad
DIK_NUMPAD3 0x51 3 on numeric keypad
DIK_NUMPAD0 0x52 0 on numeric keypad
DIK_DECIMAL 0x53 . on numeric keypad
DIK_F11 0x57 F11
DIK_F12 0x58 F12
DIK_F13 0x64 (NEC PC98)
DIK_F14 0x65 (NEC PC98)
DIK_F15 0x66 (NEC PC98)
DIK_KANA0x70 (Japanese keyboard)
DIK_CONVERT 0x79 (Japanese keyboard)
DIK_NOCONVERT 0x7B (Japanese keyboard)
DIK_YEN 0x7D (Japanese keyboard)
DIK_NUMPADEQUALS 0x8D = on numeric keypad (NEC PC98)
DIK_CIRCUMFLEX 0x90 (Japanese keyboard)
DIK_AT 0x91 (NEC PC98)
DIK_COLON 0x92 (NEC PC98)
DIK_UNDERLINE 0x93 (NEC PC98)
DIK_KANJI 0x94 (Japanese keyboard)
DIK_STOP 0x95 (NEC PC98)
DIK_AX 0x96 (Japan AX)
DIK_UNLABELED 0x97 (J3100)
DIK_NUMPADENTER 0x9C Enter on numeric keypad

DIK_RCONTROL 0x9D Right Ctrl
DIK_NUMPADCOMMA 0xB3 , on numeric keypad (NEC PC98)
DIK_DIVIDE 0xB5 / on numeric keypad
DIK_SYSRQ 0xB7 SysRq
DIK_RMENU 0xB8 Right Alt
DIK_PAUSE 0xC5 Pause
DIK_HOME 0xC7 Home on arrow keypad
DIK_UP 0xC8 Up arrow on arrow keypad
DIK_PRIOR 0xC9 Page Up on arrow keypad
DIK_LEFT 0xCB Left arrow on arrow keypad
DIK_RIGHT 0xCD Right arrow on arrow keypad
DIK_END 0xCF End on arrow keypad
DIK_DOWN 0xD0 Down arrow on arrow keypad
DIK_NEXT 0xD1 Page Down on arrow keypad
DIK_INSERT 0xD2 Insert on arrow keypad
DIK_DELETE 0xD3 Delete on arrow keypad
DIK_LWIN 0xDB Left Windows key
DIK_RWIN0xDC Right Windows key
DIK_APPS 0xDD App menu key
DIK_POWER 0xDE Power
DIK_SLEEP 0xDF Sleep

Alternate names for keys, to facilitate transition from DOS
DIK_BACKSPACE DIK_BACK Backspace
DIK_NUMPADSTAR DIK_MULTIPLY * on numeric keypad
DIK_LALT DIK_LMENU Left Alt
DIK_CAPSLOCK DIK_CAPITAL CapsLock
DIK_NUMPADMINUS DIK_SUBTRACT - on numeric keypad
DIK_NUMPADPLUS DIK_ADD + on numeric keypad
DIK_NUMPADPERIOD DIK_DECIMAL . on numeric keypad
DIK_NUMPADSLASH DIK_DIVIDE / on numeric keypad
DIK_RALT DIK_RMENU Right Alt
DIK_UPARROW DIK_UP Up arrow on arrow keypad
DIK_PGUP DIK_PRIOR Page up on arrow keypad
DIK_LEFTARROW DIK_LEFT Left arrow on arrow keypad
DIK_RIGHTARROW DIK_RIGHT Right arrow on arrow keypad
DIK_DOWNARROW DIK_DOWN Down arrow on arrow keypad
DIK_PGDN DIK_NEXT Page Down on arrow keypad

· Una clase que controle teclado y ratón

cDI.h

#include <dinput.h>

#pragma comment(lib, "dxguid.lib")
#pragma comment(lib, "dinput8.lib")

#define KEYDOWN(name, key) (name[key] & 0x80)

struct STMouse{
float x;
float y;
BOOL button[3];
BOOL rueda[2];

};

class cDI
{
public:

cDI(HINSTANCE hInstance, HWND hwnd);
IniMous();
IniKeyb();
UCHAR *LookKeyb();
STMouse LookMous();
STMouse LookMouZ(float rango, float anc, float alt, float vel, bool top);

private:
HWND hwnd;
LPDIRECTINPUT8 pDirectInput;
LPDIRECTINPUTDEVICE8 Keyb, Mous;
UCHAR buffer[256];
DIMOUSESTATE2 MousStat;
STMouse MousDat;
STMouse MousTemp;
int MovZ;
BOOL MousUpdate();
BOOL KeybUpdate();
Button(bool temp);

};

cDI.cpp

#include "cdi.h"

cDI::cDI(HINSTANCE hInstance, HWND hWnd)
{

this->hwnd = hWnd;
this->MousTemp.x=0;
this->MousTemp.y=0;
this->MovZ=0;
if (FAILED(DirectInput8Create(hInstance, DIRECTINPUT_VERSION, IID_IDirectInput8, (void **) &pDirectInput, NULL)))

{
MessageBox(hwnd, "Error creando DI", NULL, NULL);

}
}

cDI::IniKeyb()
{

pDirectInput->CreateDevice(GUID_SysKeyboard, &Keyb, NULL);
Keyb->SetDataFormat(&c_dfDIKeyboard);
Keyb->SetCooperativeLevel(hwnd, DISCL_BACKGROUND | DISCL_NONEXCLUSIVE);

if (FAILED(Keyb->Acquire()))
{

MessageBox(hwnd, "Error adquiriendo dispositivo DI 01", NULL, NULL);
}

}

cDI::IniMous ()
{

pDirectInput->CreateDevice(GUID_SysMouse, &Mous, NULL);
Mous->SetDataFormat(&c_dfDIMouse2);
Mous->SetCooperativeLevel(hwnd, DISCL_FOREGROUND | DISCL_NONEXCLUSIVE);

if (FAILED(Mous->Acquire()))
{

MessageBox(hwnd, "Error adquiriendo dispositivo DI 02", NULL, NULL);
}

}

UCHAR *cDI::LookKeyb ()
{

if (KeybUpdate()) Keyb->GetDeviceState(sizeof(buffer),(LPVOID) &buffer);
return buffer;

}

STMouse cDI::LookMous ()
{

if (MousUpdate())
{
Mous->GetDeviceState (sizeof(DIMOUSESTATE2), &MousStat);
MousDat.x = MousStat.lX;
MousDat.y = MousStat.lY;
this->Button(false);
}
return MousDat;

}

BOOL cDI::MousUpdate ()
{

if (FAILED(Mous->Acquire())) return FALSE;
return TRUE;

}

BOOL cDI::KeybUpdate()
{

if (FAILED(Keyb->Acquire())) return FALSE;
return TRUE;

}

STMouse cDI::LookMouZ (float rango, float anc, float alt, float vel, bool top)
{

float MedX, MedY;

 if (MousUpdate()) {
Mous->GetDeviceState (sizeof(DIMOUSESTATE2), &MousStat);
MousDat.x = MousStat.lX;
MousDat.y = MousStat.lY;

MedX=(anc/rango)*vel;
MedY=(alt/rango)*vel;
MousTemp.x += MousDat.x*MedX;
MousTemp.y -= MousDat.y*MedY;
if (top) {

if (MousTemp.x<-rango) MousTemp.x=-rango;
if (MousTemp.x>rango) MousTemp.x=rango;
if (MousTemp.y>rango) MousTemp.y=rango;
if (MousTemp.y<-rango) MousTemp.y=-rango;

}
this->Button(true);

}
return MousTemp;

}

cDI::Button (bool temp)
{

BOOL BoT[5]={0,0,0,0,0};
if (MousStat.rgbButtons[0]!=0) BoT[0]=1;
if (MousStat.rgbButtons[1]!=0) BoT[1]=1;
if (MousStat.rgbButtons[2]!=0) BoT[2]=1;
if (MousStat.lZ>0) BoT[3]=1;
if (MousStat.lZ<0) BoT[4]=1;
if (temp) {

MousTemp.button[0]=BoT[0];
MousTemp.button[1]=BoT[1];
MousTemp.button[2]=BoT[2];
MousTemp.rueda[0]=BoT[3];
MousTemp.rueda[1]=BoT[4];

}
else {

MousDat.button[0]=BoT[0];
MousDat.button[1]=BoT[1];
MousDat.button[2]=BoT[2];
MousDat.rueda[0]=BoT[3];
MousDat.rueda[1]=BoT[4];

}
}

En el cDI.h encontramos las definiciones para las variables y funciones del cDI.cpp:

cDI(HINSTANCE hInstance, HWND hwnd);
Para la creación de un objeto DI.

IniMous();
Para iniciar el mouse.

IniKeyb();
Para inicializar el teclado.

UCHAR *LookKeyb();
Para recoger las teclas apretadas del teclado.

STMouse LookMous();
Para calcular posición del mouse.

STMouse LookMouZ(float rango, float anc, float alt, float vel, bool top);
Para calcular posición relativa del mouse. Pasandole un rango (ya que lo toma como si el punto 0, 0 estubiese en el centro

de la ventana), un alto y un ancho, una velocidad y si tiene límites en esa altura y anchura, él calculará la posición del ratón según estos
parámetros.
HWND hwnd;

El HWND de la ventana principal, lo coge sólo al iniciar el objeto.
LPDIRECTINPUT8 pDirectInput;

Un puntero al objeto DI.
LPDIRECTINPUTDEVICE8 Keyb, Mous;

Objetos DI.
UCHAR buffer[256];

Un buffer que rellenará el teclado.
DIMOUSESTATE2 MousStat;

Donde se calculará la posición del ratón.
STMouse MousDat;

Para tener las coordenadas del ratón.
STMouse MousTemp;

Para tener las coordenadas relativas del ratón.
int MovZ;

Un indicador para el movimiento de la rueda.
BOOL MousUpdate();

Para actualizar el ratón y no perder as í el dispositivo.
BOOL KeybUpdate();

Para actualizar el teclado.
Button(bool temp);

Para comprovar qué botones del ratón se han pulsado.

Una estructura de ratón (STMouse) tiene:
Un float para la posición x y otro para la y.
Tres booleanas que indican si se ha pulsado un botón o no.
Dos booleanas para el movimiento de la rueda. La primera representa hacia arriba y la segunda hacia abajo.

Y para usarla:
cDI *DI = new cDI(hInstance, hWnd);
DI->IniKeyb ();
DI->IniMous ();

Creamos un objeto DI, y un teclado y un ratón.
Luego, dentro del bucle principal del programa:

Key=DI->LookKeyb();
Raton=DI->LookMouZ (RangoXYZ, NewANC, NewALT, 0.05, true);

if (KEYDOWN(KB,DIK_RIGHT)) xpos+=0.1;
if (Mous.button[0]) color++;
if (Mous.rueda[0]) rueda++;

· DirectMusic

DirectMusic es un objeto COM del DirectX, por lo tanto, a diferencia del DirectInput necesitaremos inicializarlo: CoInitialize(NULL);
Tres son los objetos que necesitamos para usar de forma básica el DirectMusic:

IDirectMusicPerformance8* El objeto principal del Direct Audio.
IDirectMusicLoader8* El cargador del DirectMusic
IDirectMusicSegment8* El sonido

Usaremos:
IDirectMusicPerformance8* dmusicPerformance = NULL;
IDirectMusicLoader8* dmusicLoader = NULL;
IDirectMusicSegment8* dmusicSegment = NULL;

Crear el performance y el loader

CoCreateInstance(CLSID_DirectMusicPerformance, NULL, CLSCTX_INPROC,
IID_IDirectMusicPerformance8, (void**)&dmusicPerformance);

De esta forma obtienes la interfaz del permormance.

dmusicPerformance->InitAudio(NULL, NULL, NULL, DMUS_APATH_SHARED_STEREOPLUSREVERB,
64, DMUS_AUDIOF_ALL, NULL);

Inicializa el audio. Sus parámetros son: Puntero a la interfaz del directmusic (no necesario), al del direct audio (no necesario), el hwnd, el
tipo de audiopath por defecto, numero de canales, características del sintetizador y los parámetros de este (NULL = por defecto).

CoCreateInstance(CLSID_DirectMusicLoader, NULL, CLSCTX_INPROC,
IID_IDirectMusicLoader8, (void**)&dmusicLoader);

Crear y cargar el segmento

El path por defecto
No es necesario, pero si tubiesemos todos los archivos en un mismo path, con esto, no necesitariamos pasar toda la ruta.

WCHAR searchPath[MAX_PATH];
Necesitamos que el path no sea char, sino WCHAR.

MultiByteToWideChar(CP_ACP, 0, "\data", -1, searchPath, MAX_PATH);
Con esta función pasamos “\data” (que es el path que usaremos) a WCHAR.

dmusicLoader->SetSearchDirectory (GUID_DirectMusicAllTypes, searchPath, FALSE);
Y lo definimos como path por defecto.

Respecto al segmento
WCHAR filename[MAX_PATH];

Necesitamos que el nombre del archivo no sea char, sino WCHAR.
MultiByteToWideChar(CP_ACP, 0, file, -1, filename, MAX_PATH);

Con esta función pasamos “file” (que es un char) a WCHAR.
dmusicLoader->LoadObjectFromFile(CLSID_DirectMusicSegment, IID_IDirectMusicSegment8,

filename, (void**)&dmusicSegment);
Cargamos el archivo sobre el loader y el segmento.

dmusicSegment->Download(dmusicPerformance);
Preparamos el segmento para recibir los datos.

Manipular el sonido

Que suene
dmusicPerformance->PlaySegmentEx (dmusicSegment, NULL, NULL, 0,0, NULL, NULL, NULL);

Parámetros: Segmento con el archivo cargado, NULL, el segmento de transición, flags del metodo de comportamiento (¿?), el momento
en que empieza a reproducirse, estado del segmento, cuando parará y el path en el que está (NULL es el de por defecto).

Pararlo
dmusicPerformance->StopEx(dmusicSegment, 0,0);

Parámetros: El segmento, el momento en el que para, 0.
dmusicPerformance->Stop(dmusicSegment, NULL, 0, 0);

Parámetros: El segmento (NULL son todos), NULL, el momento en el que para (0 inmediatamente).

Está sonando?
dmusicPerformance->IsPlaying (dmusicSegment, NULL)

Si el segmento introducido está sonando devolverá: S_OK.

Que se repita
dmusicSegment->SetRepeats(Loops);

Loops: Las veces que se repetirá ese segmento.

Y Cerrar DirectMusic

Las funciones usadas para ello son:
dmusicPerformance->CloseDown();
dmusicLoader->Release ();
dmusicPerformance->Release();
dmusicSegment->Release();
CoUninitialize();

Un ejemplo:

Código

#include <dmusicc.h>
#include <dmusici.h>

#pragma comment(lib, "dxguid.lib")

IDirectMusicPerformance8* dmusicPerformance = NULL;
IDirectMusicLoader8* dmusicLoader = NULL;
IDirectMusicSegment8* dmusicSegment = NULL;

void IniDMusic(HWND hwnd)
{

WCHAR searchPath[MAX_PATH];

CoInitialize(NULL);

CoCreateInstance(CLSID_DirectMusicPerformance, NULL, CLSCTX_INPROC,
IID_IDirectMusicPerformance8, (void**)&dmusicPerformance);

dmusicPerformance->InitAudio(NULL, NULL, NULL, DMUS_APATH_SHARED_STEREOPLUSREVERB,
64, DMUS_AUDIOF_ALL, NULL);

CoCreateInstance(CLSID_DirectMusicLoader, NULL, CLSCTX_INPROC,
IID_IDirectMusicLoader8, (void**)&dmusicLoader);

MultiByteToWideChar(CP_ACP, 0, "\data", -1, searchPath, MAX_PATH);
dmusicLoader->SetSearchDirectory (GUID_DirectMusicAllTypes, searchPath, FALSE);

}

void LoadWDMusic(char* file)
{

WCHAR filename[MAX_PATH];
MultiByteToWideChar(CP_ACP, 0, file, -1, filename, MAX_PATH);
dmusicLoader->LoadObjectFromFile(CLSID_DirectMusicSegment, IID_IDirectMusicSegment8,

filename, (void**)&dmusicSegment);
dmusicSegment->Download(dmusicPerformance);

}

void Play()
{

dmusicPerformance->PlaySegmentEx (dmusicSegment, NULL, NULL, 0,0, NULL, NULL, NULL);
}

void Stop()
{

dmusicPerformance->StopEx(dmusicSegment, 0,0);
}

bool Suena()
{

if (dmusicPerformance->IsPlaying (dmusicSegment, NULL) == S_OK)
return true;

else
return false;

}

void OtraVez()
{

static int Loops = 1;
Loops ++;
dmusicSegment->SetRepeats(Loops);

}

void EndDMusc()
{

dmusicPerformance->CloseDown();
dmusicLoader->Release ();
dmusicPerformance->Release();
dmusicSegment->Release();
CoUninitialize();

}

Llamadas

case VK_ESCAPE:
PostQuitMessage (0);
break;

case VK_RIGHT:
Play();
break;

case VK_LEFT:
Stop();
break;

case VK_DOWN:
if (Suena())

MessageBox(hWnd, "ESTA SONANDO", NULL, NULL);
else

MessageBox(hWnd, "NO SUENA NADA", NULL, NULL);
break;

case VK_UP:
OtraVez();

