
How We Built Filmgrain, Part 2 of 2 

By Ryan on July 02, 2013

Filmgrain ranks movies by popularity on Twitter and enables users to watch

what people are tweeting about those movies in real time. Part 1 [1] describes

how we built our backend making extensive use of Redis [2]. This post focuses on

why we chose to build a TCP API, how we structured our API, and the

technologies we use on the endpoints so that they can handle a large number of

concurrent TCP clients.

Why Build A TCP API?

While an HTTP API is ideal for many types of apps, the fact that there is so little

discussion of alternatives is troubling. I fear that we as a community of

developers have gotten dogmatic in our thinking that an HTTP API is always the

best choice. In fact, I believe it is definitely the wrong choice if you’re building

an app that would benefit from doing things other than simply downloading and

presenting information to the user.

There is a huge opportunity for a next generation of apps that feel more alive to

users by moving way from the poll-then-present model as embodied by the

refresh button or gesture that exists in many apps. This is what made push

notifications so exciting—instead of checking my email by opening the app and

hitting refresh, I’m made aware of new emails as they arrive.

The very concept of needing to refresh is the result of thinking-in-HTTP-APIs

and, by moving away from the need to refresh, we can build noticeably better

experiences for our users. To that end, we chose to build a TCP API for Filmgrain

to see how it worked out.

Structuring Our TCP API

Choosing to build a TCP API means that many of the decisions that are made for

http://blog.filmgrainapp.com/2013/06/25/how-we-built-filmgrain-part-1-of-2/
http://redis.io/


you when building an HTTP API now fall on you as the developer. This includes

how requests are made, how they are encoded, and how each request itself is

structured.

The first choice we made was that each mobile client would open and maintain a

single TCP connection to one of our endpoints and that all communication

between the mobile client and the backend would take place over this

connection. Since TCP provides bidirectional communication and guarantees

in-order delivery over the same connection, this choice provided us with a solid

framework for communicating. TCP says nothing, however, about how messages

are encoded and structured so we had to decide that next.

We chose newline terminated JSON as the encoding for messages between the

client and server. This ended up being an easy decision since JSON is familiar

and flexible, and newlines make sense as indicators for the end of a message.

The Communication Protocol

We structure each message as a JSON object with two properties: an action and

its parameters. All messages between the clients and the backend follow this

same structure. The JSON looks like this:

{"action": "action_name", "params": { ... }}

An example session of Filmgrain will look something like this:

Upon opening the app...

{"action": "connect", "params": { ... }}

{"action": "set_movies", "params": {"movies": { ... }}}

When the user picks a movie...

{"action": "start_feed", "params": {"movie_id": 1234}}

{"action": "post_tweet", "params": {"tweet": { ... }}}

{"action": "post_tweet", "params": {"tweet": { ... }}}



{"action": "post_tweet", "params": {"tweet": { ... }}}

When the user leaves that movie...

{"action": "stop_feed", "params": {"tweet": { ... }}}

Load Balancing

Adopting a load balancing strategy is important since each client connects

directly to an endpoint and these endpoints can only handle so many

concurrent connections. Spreading these TCP connections among multiple

endpoints can be accomplished in many ways, but we think we’ve chosen a

simple and scalable way.

When the app is opened, before it can connect to an endpoint it first downloads

a JSON file from S3 containing a list of available endpoint IP addresses and

ports. The mobile client then chooses one of these endpoints at random and

connects.

By having each mobile client pick an endpoint at random, this balances the load

among the endpoints reasonably well. In the event of one endpoint getting

overburdened, we gave each endpoint the ability to tell any of its clients to

connect to a different endpoint.

The JSON file listing available endpoints is updated automatically as we bring

up and down endpoints, and, since we’ve hosted it on S3, it has extremely high

availability. We believe this strategy is an simple, durable, and inexpensive way

of balancing the load among endpoints.

Security

Choosing to build a TCP API doesn’t mean you will have to give up the option of

encrypting all of your communication. In fact, we chose to make our API secure

from the start. Each mobile client opens a secure socket connection to one of our

endpoints and the encryption is provided by all of the same tools that are used

to handle HTTPS, including OpenSSL and an SSL certificate.

Building The Endpoints



1. http://blog.filmgrainapp.com/2013/06/25/how-we-built-filmgrain-part-1-of-2/

2. http://redis.io/

3. http://www.gevent.org/

4. http://twistedmatrix.com/trac/

5. http://www.reddit.com/r/programming/comments/1hi769/building_a_tcp_api_how_we_built_our_realtime_app/

6. https://news.ycombinator.com/item?id=5980270

We wrote our endpoint process in Python and use gevent [3] so that each

endpoint can support a large number of concurrent clients. We chose gevent

over an evented framework like Twisted [4] because it is simpler and cleaner to

write standard python for gevent than it is to write callback based python for

Twisted.

The coroutine model of gevent is great to work with and we’ve been very happy

with the performance and stability. By saving us from having to use threads or

callback-ridden code, gevent has made our lives much easier.

That’s All

Building the Filmgrain app on top of our TCP API was an eye-opening

experience. Once we had the mobile client and the server chatting, adding all of

the functionality became trivial from a networking perspective. HTTP is just a

burden and I encourage more app developers to consider building a straight TCP

API for their next app.

Discuss this post on reddit [5]

Discuss this post on Hacker News [6]

 

http://www.gevent.org/
http://twistedmatrix.com/trac/
http://www.reddit.com/r/programming/comments/1hi769/building_a_tcp_api_how_we_built_our_realtime_app/
https://news.ycombinator.com/item?id=5980270



