How We Built Filmgrain, Part 2 of 2

By Ryan on July 02, 2013

Filmgrain ranks movies by popularity on Twitter and enables users to watch
what people are tweeting about those movies in real time. Part 1 [1] describes

how we built our backend making extensive use of Redis [21. This post focuses on
why we chose to build a TCP API, how we structured our API, and the
technologies we use on the endpoints so that they can handle a large number of
concurrent TCP clients.

Why Build A TCP API?

While an HTTP API is ideal for many types of apps, the fact that there is so little
discussion of alternatives is troubling. I fear that we as a community of
developers have gotten dogmatic in our thinking that an HTTP API is always the
best choice. In fact, I believe it is definitely the wrong choice if you’re building
an app that would benefit from doing things other than simply downloading and
presenting information to the user.

There is a huge opportunity for a next generation of apps that feel more alive to
users by moving way from the poll-then-present model as embodied by the
refresh button or gesture that exists in many apps. This is what made push
notifications so exciting—instead of checking my email by opening the app and
hitting refresh, I’'m made aware of new emails as they arrive.

The very concept of needing to refresh is the result of thinking-in-HTTP-APIs
and, by moving away from the need to refresh, we can build noticeably better
experiences for our users. To that end, we chose to build a TCP API for Filmgrain
to see how it worked out.

Structuring Our TCP API

Choosing to build a TCP API means that many of the decisions that are made for


http://blog.filmgrainapp.com/2013/06/25/how-we-built-filmgrain-part-1-of-2/
http://redis.io/

you when building an HTTP API now fall on you as the developer. This includes
how requests are made, how they are encoded, and how each request itself is
structured.

The first choice we made was that each mobile client would open and maintain a
single TCP connection to one of our endpoints and that all communication
between the mobile client and the backend would take place over this
connection. Since TCP provides bidirectional communication and guarantees
in-order delivery over the same connection, this choice provided us with a solid
framework for communicating. TCP says nothing, however, about how messages
are encoded and structured so we had to decide that next.

We chose newline terminated JSON as the encoding for messages between the
client and server. This ended up being an easy decision since JSON is familiar
and flexible, and newlines make sense as indicators for the end of a message.
The Communication Protocol

We structure each message as a JSON object with two properties: an action and
its parameters. All messages between the clients and the backend follow this
same structure. The JSON looks like this:

{"action": "action_name", "params”: { ... }}

An example session of Filmgrain will look something like this:

Upon opening the app...

{"action": "connect”, "params": { ... }}

{"action": "set_movies", "params": {"movies”: { ... }}}

When the user picks a movie...

{"action": "start_feed", "params": {"movie_id": 1234}}

{"action": "post_tweet", "params": {"tweet": { ... }}}

{"action": "post_tweet", "params”: {"tweet”: { ... }}}



{"action": "post_tweet", "params": {"tweet": { ... }}}

When the user leaves that movie...

{"action": "stop_feed", "params": {"tweet": { ... }}}

Load Balancing

Adopting a load balancing strategy is important since each client connects
directly to an endpoint and these endpoints can only handle so many
concurrent connections. Spreading these TCP connections among multiple
endpoints can be accomplished in many ways, but we think we’ve chosen a
simple and scalable way.

When the app is opened, before it can connect to an endpoint it first downloads
a JSON file from S3 containing a list of available endpoint IP addresses and
ports. The mobile client then chooses one of these endpoints at random and
connects.

By having each mobile client pick an endpoint at random, this balances the load
among the endpoints reasonably well. In the event of one endpoint getting
overburdened, we gave each endpoint the ability to tell any of its clients to
connect to a different endpoint.

The JSON file listing available endpoints is updated automatically as we bring
up and down endpoints, and, since we’ve hosted it on S3, it has extremely high
availability. We believe this strategy is an simple, durable, and inexpensive way
of balancing the load among endpoints.

Security

Choosing to build a TCP API doesn’t mean you will have to give up the option of
encrypting all of your communication. In fact, we chose to make our API secure
from the start. Each mobile client opens a secure socket connection to one of our
endpoints and the encryption is provided by all of the same tools that are used
to handle HTTPS, including OpenSSL and an SSL certificate.

Building The Endpoints



We wrote our endpoint process in Python and use gevent [3] so that each
endpoint can support a large number of concurrent clients. We chose gevent

over an evented framework like Twisted [4] because it is simpler and cleaner to
write standard python for gevent than it is to write callback based python for
Twisted.

The coroutine model of gevent is great to work with and we’ve been very happy
with the performance and stability. By saving us from having to use threads or
callback-ridden code, gevent has made our lives much easier.

That’s All

Building the Filmgrain app on top of our TCP API was an eye-opening
experience. Once we had the mobile client and the server chatting, adding all of
the functionality became trivial from a networking perspective. HTTP is just a
burden and I encourage more app developers to consider building a straight TCP
API for their next app.

Discuss this post on reddit [5]

Discuss this post on Hacker News [6]

1. http://blog.filmgrainapp.com/2013/06/25/how-we-built-filmgrain-part-1-of-2/

2. http://redis.io/

3. http://www.gevent.org/

4. http://twistedmatrix.com/trac/

5. http://www.reddit.com/r/programming/comments/1hi769/building a_tcp api how we built our realtime app/

6. https://news.ycombinator.com/item?id=5980270


http://www.gevent.org/
http://twistedmatrix.com/trac/
http://www.reddit.com/r/programming/comments/1hi769/building_a_tcp_api_how_we_built_our_realtime_app/
https://news.ycombinator.com/item?id=5980270




