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What it is:

Avoid coupling the sender of a request to
its receiver by giving more than one object
a chance to handle the request. Chain the
receiving objects and pass the request
along the chain until an object handles it.

Command

Type: Behavioral

What it is:

Encapsulate a request as an object,
thereby letting you parameterize clients
with different requests, queue or log
requests, and support undoable operations.

Interpreter

Type: Behavioral

What it is:

Given a language, define a representation
for its grammar along with an interpreter
that uses the representation to interpret
sentences in the language.

Iterator

Type: Behavioral

What it is:

Provide a way to access the elements of
an aggregate object sequentially without
exposing its underlying representation.

Mediator
Type: Behavioral

What it is:

Define an object that encapsulates how a
set of objects interact. Promotes loose
coupling by keeping objects from referring
to each other explicitly and it lets you vary
their interactions independently.

Memento
Type: Behavioral

What it is:
Without violating encapsulation, capture
and externalize an object's internal state
so that the object can be restored to this
state later.

Memento
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+setMemento(in m : Memento)

+createMemento()
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Observer Subject notifies «interface»
X X +attach(in o : Observer) ohseivel
Type: Behavioral +detach(in o : Observer) +update()
+notif
What it is: notity()
Define a one-to-many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically.
ConcreteSubject | opserves | ConcreteObserver
-subjectState -observerState
+update()
State Context ‘—l
Type: Behavioral gesil) «interface»
State
What it is: +handle()
Allow an object to alter its behavior when
its internal state changes. The object will
appear to change its class.
ConcreteState1 ConcreteState2
+handle() +handle()
Strategy Context Q—l
Type: Behavioral «interface»
Strategy
What it is:
Define a family of algorithms, e
encapsulate each one, and make them
interchangeable. Lets the algorithm vary
independently from
clients that use it.
ConcreteStrategyA ConcreteStrategyB
+execute() +execute()
Template Method
AbstractClass
Type: Behavioral +templateMethod()
#subMethod()
What it is:
Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.
Lets subclasses redefine certain steps
of an algorithm without changing the
algorithm's structure. ConcreteClass
+subMethod()
. «interface»
Visitor Visitor -
Client

Type: Behavioral

+visitElementA(in a : ConcreteElementA)
+visitElementB(in b : ConcreteElementB)

What it is:
Represent an operation to be
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«interface»

performed on the elements of an
object structure. Lets you define a

ConcreteVisitor
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new operation without changing
the classes of the elements on
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+visitElementB(in b : ConcreteElementB)
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which it operates.
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+accept(in v : Visitor)
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Adapter
Type: Structural

What it is:

Convert the interface of a class into
another interface clients expect. Lets
classes work together that couldn't
otherwise because of incompatible
interfaces.

Bridge
Type: Structural

What it is:

Decouple an abstraction from its
implementation so that the two can vary
independently.

Composite
Type: Structural

What it is:

Compose objects into tree structures to
represent part-whole hierarchies. Lets
clients treat individual objects and
compositions of objects uniformly.

Decorator
Type: Structural

What it is:

Attach additional responsibilities to an
object dynamically. Provide a flexible
alternative to sub-classing for extending
functionality.

Facade
Type: Structural

What it is:

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem
easier to use.

Flyweight
Type: Structural
What it is:

Use sharing to support large numbers of
fine grained objects efficiently.

-intrinsicState

UnsharedConcreteFlyweight

+operation(in extrinsicState)

-allState

+operation(in extrinsicState)

Proxy
Type: Structural

What it is:
Provide a surrogate or placeholder for
another object to control access to it.

Abstract Factory

Type: Creational

What it is:

Provides an interface for creating
families of related or dependent
objects without specifying their
concrete class.

«interface»
Subject
+request()
[ |
RealSubject represents Proxy
+request() +request()

Builder
Type: Creational

What it is:

Separate the construction of a
complex object from its representing
so that the same construction
process can create different
representations.

Factory Method
Type: Creational

What it is:
Define an interface for creating an

object, but let subclasses decide which
class to instantiate. Lets a class defer

instantiation to subclasses.

Prototype

Type: Creational

What it is:

Specify the kinds of objects to create
using a prototypical instance, and

create new objects by copying this
prototype.

Singleton
Type: Creational

What it is:

Ensure a class only has one instance and

provide a global point of access to it.
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