Abstract Factory

Adapter
Bridge
Builder

Chain of Responsibility

Command
Composite
Decorator

Facade

Flyweight

Interpreter
Iterator
Mediator

Memento

Prototype

Handler

Factory Method

Proxy

Observer
Singleton

State

Strategy
Template Method
Visitor

«interface» successor Ghain of Responsibility
]
+handleRequest() Type: Behavioral

ConcreteHandler1

ConcreteHandler2

+handleRequest()

+handleRequest()

Client l—b| Invoker

Command

Y +execute()

¢

Receiver

A
Context

A—\

ConcreteCommand

+execute()

«interface»
AbstractExpression

+interpret()

—

TerminalExpression

NonterminalExpression

+interpret() : Context

+interpret() : Context

«interface» «interface»
Aggregate Iterator
+createlterator() +next()
ConcreteAggregate Concretelterator
+createlterator() : Context +next() : Context

informs

Mediator

updates

ConcreteMediator

«interface»
Colleage

ConcreteColleague

Copyright © 2007 Jason S. McDonald

Gamma
http://www.McDonaldLand.info

What it is:

Avoid coupling the sender of a request to
its receiver by giving more than one object
a chance to handle the request. Chain the
receiving objects and pass the request
along the chain until an object handles it.

Command

Type: Behavioral

What it is:

Encapsulate a request as an object,
thereby letting you parameterize clients
with different requests, queue or log
requests, and support undoable operations.

Interpreter

Type: Behavioral

What it is:

Given a language, define a representation
for its grammar along with an interpreter
that uses the representation to interpret
sentences in the language.

Iterator

Type: Behavioral

What it is:

Provide a way to access the elements of
an aggregate object sequentially without
exposing its underlying representation.

Mediator
Type: Behavioral

What it is:

Define an object that encapsulates how a
set of objects interact. Promotes loose
coupling by keeping objects from referring
to each other explicitly and it lets you vary
their interactions independently.

Memento
Type: Behavioral

What it is:
Without violating encapsulation, capture
and externalize an object's internal state
so that the object can be restored to this
state later.

Memento

-state

Originator

-state

+setMemento(in m : Memento)

+createMemento()

«interface» -
Observer Subject notifies «interface»
X X +attach(in o : Observer) ohseivel
Type: Behavioral +detach(in o : Observer) +update()
+notif
What it is: notity()
Define a one-to-many dependency between
objects so that when one object changes
state, all its dependents are notified and
updated automatically.
ConcreteSubject | opserves | ConcreteObserver
-subjectState -observerState
+update()
State Context ‘—l
Type: Behavioral gesil) «interface»
State
What it is: +handle()
Allow an object to alter its behavior when
its internal state changes. The object will
appear to change its class.
ConcreteState1 ConcreteState2
+handle() +handle()
Strategy Context Q—l
Type: Behavioral «interface»
Strategy
What it is:
Define a family of algorithms, e
encapsulate each one, and make them
interchangeable. Lets the algorithm vary
independently from
clients that use it.
ConcreteStrategyA ConcreteStrategyB
+execute() +execute()
Template Method
AbstractClass
Type: Behavioral +templateMethod()
#subMethod()
What it is:
Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses.
Lets subclasses redefine certain steps
of an algorithm without changing the
algorithm's structure. ConcreteClass
+subMethod()
. «interface»
Visitor Visitor -
Client

Type: Behavioral

+visitElementA(in a : ConcreteElementA)
+visitElementB(in b : ConcreteElementB)

What it is:
Represent an operation to be

AN

«interface»

performed on the elements of an
object structure. Lets you define a

ConcreteVisitor

Element

+accept(in v : Visitor)

new operation without changing
the classes of the elements on

+visitElementA(in a : ConcreteElementA)
+visitElementB(in b : ConcreteElementB)

JA

which it operates.

ConcreteElementA

+accept(in v : Visitor)

ConcreteElementB

+accept(in v : Visitor)

«interface»
+operation()
ConcreteAdapter
Adaptee
-adaptee)
+adaptedOperation()
+operation()

Abstraction

+operation()

«interface»
Implementor

+operationimpl()

T

ConcretelmplementorA

ConcretelmplementorB

+operationimpl() +operationlmpl()

«interface»
Component
+operation()
+add(in ¢ : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

children

Component

Leaf +operation()

+add(in ¢ : Component)
+remove(in ¢ : Component)
+getChild(in i : int)

+operation()

é TR ConcreteComponent
omponent
+operation() +operation()
Decorator
H +operation()
ConcreateDecorator
-addedState
+operation()
+addedBehavior()

————{ Faae
C I Y

«interface»

FlyweightFactory Flyweight

+getFlyweight(in key) +operation(in extrinsicState)

Client

ZF

ConcreteFlyweight

Adapter
Type: Structural

What it is:

Convert the interface of a class into
another interface clients expect. Lets
classes work together that couldn't
otherwise because of incompatible
interfaces.

Bridge
Type: Structural

What it is:

Decouple an abstraction from its
implementation so that the two can vary
independently.

Composite
Type: Structural

What it is:

Compose objects into tree structures to
represent part-whole hierarchies. Lets
clients treat individual objects and
compositions of objects uniformly.

Decorator
Type: Structural

What it is:

Attach additional responsibilities to an
object dynamically. Provide a flexible
alternative to sub-classing for extending
functionality.

Facade
Type: Structural

What it is:

Provide a unified interface to a set of
interfaces in a subsystem. Defines a high-
level interface that makes the subsystem
easier to use.

Flyweight
Type: Structural
What it is:

Use sharing to support large numbers of
fine grained objects efficiently.

-intrinsicState

UnsharedConcreteFlyweight

+operation(in extrinsicState)

-allState

+operation(in extrinsicState)

Proxy
Type: Structural

What it is:
Provide a surrogate or placeholder for
another object to control access to it.

Abstract Factory

Type: Creational

What it is:

Provides an interface for creating
families of related or dependent
objects without specifying their
concrete class.

«interface»
Subject
+request()
[|
RealSubject represents Proxy
+request() +request()

Builder
Type: Creational

What it is:

Separate the construction of a
complex object from its representing
so that the same construction
process can create different
representations.

Factory Method
Type: Creational

What it is:
Define an interface for creating an

object, but let subclasses decide which
class to instantiate. Lets a class defer

instantiation to subclasses.

Prototype

Type: Creational

What it is:

Specify the kinds of objects to create
using a prototypical instance, and

create new objects by copying this
prototype.

Singleton
Type: Creational

What it is:

Ensure a class only has one instance and

provide a global point of access to it.

Copyright © 2007 Jason S. McDonald G

http://www.McDonaldLand.info

«interface»
AbstractFactory
+createProductA() Ab«ltntertfpﬁce; .
+createProductB() stractProduc!
ConcreateFactory
+createProductA() ConcreteProduct
+createProductB()
Director «Igtsirlf::f»
+construct() +buildPart()

ConcreteBuilder

+buildPart()
+getResult()
Rodlict +factoryMethod()
A +anOperation()
ConcreteCreator
ConcreteProduct (¢ — — — — —
+factoryMethod()

«interface»
Prototype

+clone()

T

ConcretePrototype2

ConcretePrototype1

+clone() +clone()

Singleton

-static uniquelnstance
-singletonData

+static instance()
+SingletonOperation()

amma

