Herramientas de usuario

Herramientas del sitio


wiki2:ogl

OpenGL & GLSL

Render

glDrawArrays & glDrawElements

glDrawArrays is basically “draw this contiguous range of vertices, using the data I gave you earlier”.

  • Good:
    • You don't need to build an index buffer
  • Bad:
    • If you organise your data into GL_TRIANGLES, you will have duplicate vertex data for adjacent triangles. This is obviously wasteful.
    • If you use GL_TRIANGLE_STRIP and GL_TRIANGLE_FAN to try and avoid duplicating data: it isn't terribly effective and you'd have to make a rendering call for each strip and fan. OpenGL calls are expensive and should be avoided where possible.

With glDrawElements, you pass in buffer containing the indices of the vertices you want to draw.

  • Good
    • No duplicate vertex data - you just index the same data for different triangles
    • You can just use GL_TRIANGLES and rely on the vertex cache to avoid processing the same data twice - no need to re-organise your geometry data or split rendering over multiple calls
  • Bad
    • Memory overhead of index buffer

Buffers

VBO (Vertex Buffer Objects)

OpenGL ES defines the concept of buffers for exchanging data between memory areas. A buffer is a contiguous range of RAM that the graphics processor can control and manage. All the data that programs supply to the GPU should be in buffers. It doesn’t matter if a buffer stores geometric data, colors, hints for lighting effects, or other information.

The process of creating and using VBOs (Vertex Buffer Objects) should be familiar to you because it mimics the process used for textures: first generate a ‘‘name,’’ allocate space for the data, load the data, and then use glBindBuffer() whenever you want to use it.

  1. Generate. glGenBuffers(). Ask OpenGL ES to generate a unique identifier for a buffer that the graphics processor controls.
  2. Bind. glBindBuffer(). Tell OpenGL ES to use a buffer for subsequent operations.
  3. Buffer Data. glBufferData() or glBufferSubData(). Tell OpenGL ES to allocate and initialize sufficient contiguous memory for a currently bound buffer—often by copying data from CPU-controlled memory into the allocated memory.
  4. Enable or Disable. Tell OpenGL ES whether to use data in buffers during subsequent rendering.
  5. Set Pointers. Tell OpenGL ES about the types of data in buffers and any memory offsets needed to access the data.
  6. Draw glDrawArrays() or glDrawElements(). Tell OpenGL ES to render all or part of a scene using data in currently bound and enabled buffers.
  7. DeleteglDeleteBuffers(). Tell OpenGL ES to delete previously generated buffers and free associated resources.
-(void)createVBO {
	int numXYZElements=3;
	int numNormalElements=3;
	int numColorElements=4;
	int numTextureCoordElements=2;
	long totalXYZBytes;
	long totalNormalBytes;
	long totalTexCoordinateBytes;
	int numBytesPerVertex;
 
	// we need to generate a name for this VBO
	glGenBuffers(1, &m_VBO_SphereDataName);
	glBindBuffer(GL_ARRAY_BUFFER,m_VBO_SphereDataName);
 
	/* 
	the size of each vertex in the lines 2ff. And in this case a 
	vertex is the summation of its coordinates, texture coordinates, and
	the normal vector, as required. The total is now multiplied by the total
	number of vertices.
	*/
	numBytesPerVertex=numXYZElements; 
	if(m_UseNormals) numBytesPerVertex+=numNormalElements;
	if(m_UseTexture) numBytesPerVertex+=numTextureCoordElements;
	numBytesPerVertex*=sizeof(GLfloat); 
 
	/*
	allocates the memory on the GPU. The final parameter is a hint to the 
	driver saying that the data is never expected to change. If you expect 
	to update it, then use GL_DYNAMIC_DRAW.
	*/
	glBufferData(GL_ARRAY_BUFFER, numBytesPerVertex*m_NumVertices, 0, GL_STATIC_DRAW);
 
	/*
	Here we use memory mapping by calling glMapBufferOES(). This
	returns a pointer to a memory-mapped portion of the GPU’s data
	storage inside the application’s address space. The direct method uses
	the more traditional glBufferData().
	*/
	GLubyte *vboBuffer=(GLubyte *)glMapBufferOES(GL_ARRAY_BUFFER, GL_WRITE_ONLY_OES);
 
	/*
	Now calculate the total number of bytes for each data type.
	*/
	totalXYZBytes=numXYZElements*m_NumVertices*sizeof(GLfloat);
	totalNormalBytes=numNormalElements*m_NumVertices*sizeof(GLfloat);
	totalTexCoordinateBytes=numTextureCoordElements*m_NumVertices*sizeof(GLfloat);
 
	// it is possible to copy the individual buffers one at a time by merely using memcpy()
	memcpy(vboBuffer,m_VertexData,totalXYZBytes);
	if(m_UseNormals) {
		vboBuffer += totalXYZBytes;
		memcpy(vboBuffer,m_NormalData,totalNormalBytes);
	}
	if(m_UseTexture) {
		vboBuffer += totalNormalBytes;
		memcpy(vboBuffer,m_TexCoordsData,totalTexCoordinateBytes);
	}
 
	// forces the actual copy action to execute
	glUnmapBufferOES(GL_ARRAY_BUFFER);
	m_TotalXYZBytes=totalXYZBytes;
	m_TotalNormalBytes=totalNormalBytes;
}
-(bool)renderVBO {
	int i;
	static int counter=0;
	/*
	binds it, in the same way a texture is bound. This simply makes
	it the current object in use, until another is bound or this one is
	unbound with glBindBuffer(GL_ARRAY_BUFFER, 0);.
	*/
	glBindBuffer(GL_ARRAY_BUFFER, m_VBO_SphereDataName);
 
	glMatrixMode(GL_MODELVIEW);
	glDisable(GL_CULL_FACE);
	glEnable(GL_BLEND);
	glEnable(GL_DEPTH_TEST);
 
	/*
	enable the various data buffers as has been done in previous
	execute() methods.
	*/
	glEnableClientState(GL_VERTEX_ARRAY);
	if(m_UseNormals) glEnableClientState(GL_NORMAL_ARRAY);
 
	/*
	When using VBOs, the various pointers to the data blocks are the offset 
	from the first element, which always starts at ‘‘address’’ of zero instead 
	one in the app’s own address space. So, the vertex pointer starts at address 
	of 0, while the normals are right after the vertices, and the texture 
	coordinates are right after the normals.
	*/
	glVertexPointer(3,GL_FLOAT,0,(GLvoid*)(char*)0);
	glNormalPointer(GL_FLOAT,0,(const GLvoid*)(char*)(0+m_TotalXYZBytes));
	glTexCoordPointer(2,GL_FLOAT,0, (const GLvoid*)((char*)(m_TotalXYZBytes+m_TotalNormalBytes)));
	if(m_UseTexture) {
		if(m_TexCoordsData!=nil) {
			glEnable(GL_TEXTURE_2D);
			glEnableClientState(GL_TEXTURE_COORD_ARRAY);
			if(m_TextureID!=0) glBindTexture(GL_TEXTURE_2D, m_TextureID);
		}
	} else {
		glDisableClientState(GL_TEXTURE_COORD_ARRAY);
	}
 
	/*
	Draw
	*/
	glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2);
	glDisable(GL_BLEND);
	glDisable(GL_TEXTURE_2D);
	return true;
}

Texturas

Básico

Creating textures is very similar to creating vertex buffers : Create a texture, bind it, fill it, and configure it.

Remember to use power of two textures (…, 128×128, 256×256, 1024×1024…). However, in standard OpenGL ES 2.0, textures don’t have to be square, but each dimension should be a power of two ( POT ). This means that each dimension should be a number like 128, 256, 512, and so on, but there is also a maximum texture size that varies from implementation to implementation but is usually something large, like 2048 x 2048.

In glTexImage2D, the GL_RGB indicates that we are talking about a 3-component color, and GL_BGR says how exactly it is represented in RAM. As a matter of fact, BMP does not store Red→Green→Blue but Blue→Green→Red, so we have to tell it to OpenGL. So imagine that we stored a BMP in a unsigned char* data variable, and unsigned int widht, height variables have the size:

// Create one OpenGL texture
GLuint textureID;
glGenTextures(1, &textureID);
 
// "Bind" the newly created texture : all future texture functions will modify this texture
glBindTexture(GL_TEXTURE_2D, textureID);
 
// Give the image to OpenGL
glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data);
 
// Configure the texture
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);

Animar texturas

Usando el fragment shader

Renderizar sobre textura

Para esto se usa un FBO. Básicamente creas el FBO, reemplazas el buffer donde renderizas por el del FBO creado y dibujas, luego enlazas otra vez el buffer por defecto y en el FBO tienes la textura.

Recuerda indicar el tamaño de píxels, haber creado anteriormente de las texturas que vas a usar en el fbo y tener el shader program activo.

:!: Recuerda que para OpenGL el 0,0 está en la esquina de abajo a la izquierda. Si el sistema que usas cambia, es probable que la textura fbo aparezca volteada.

Transformaciones

Anidar transformaciones (push y pop matrix)

Para anidar transformaciones dentro de otras (al mover, escalar un elemento se mueva y escale igual el que tiene dentro), las figuras hijo aplicarán sus transformaciones a partir de la matriz del modelo de la padre.

Es decir:

float[] translateMatrix = new float[16];
setIdentityM(translateMatrix, 0);
float[] scaleMatrix = new float[16];
setIdentityM(scaleMatrix, 0);
 
if (mMatrix == null) {
    // Si no tiene padre inicializamos la matriz del modelo a la identidad
    setIdentityM(modelMatrix, 0);
} else {
    // Si tiene padre usamos su matriz de modelo para aplicar las nuevas transformaciones
    for (int i = 0; i < 16; i++)
        modelMatrix[i] = mMatrix[i];
}
 
// Creamos nuestras transformaciones
translateM(translateMatrix, 0, posX, posY, posZ);
scaleM(scaleMatrix, 0, sizeX, sizeY, sizeZ);
 
float[] temp = new float[16];
 
// Aplicamos las transformaciones sobre la matriz del modelo (anterior o identidad)
multiplyMM(temp, 0, modelMatrix, 0, translateMatrix, 0);
for (int i = 0; i < 16; i++)
    modelMatrix[i] = temp[i];
 
multiplyMM(temp, 0, modelMatrix, 0, scaleMatrix, 0);
for (int i = 0; i < 16; i++)
    modelMatrix[i] = temp[i];

Lenguaje GLSL

Reserverd variables

  • vec4 gl_Position: Reserved variable within the vertex shader that holds the final transformed vertex to be displayed on the screen
  • vec4 gl_FragColor: Reserved variable within the fragment shader that holds the color of the vertex that has just been processed by the vertex shader

Data types

  • void: No function return value
  • bool: Boolean
  • int: Signed integer
  • float: Floating scalar
  • vec2, vec3, vec4: 2, 3, and 4 component floating-point vector
  • bvec2, bvec3, bvec4: 2, 3, and 4 component Boolean vector
  • ivec2, ivec3, ivec4: 2, 3, and 4 component signed integer vector
  • mat2, mat3, mat4: 2-by-2, 3-by-3, and 4-by-4 float matrices
  • sampler2D: Used to represent and access a 2D texture
  • samplerCube: Used to represent and access a cube mapped texture
  • float floatarray[3]: One-dimensional arrays; can be of types such as floats, vectors, and integers

You can address components in a vec4 type in the following ways:

  • {x, y, z, w}: You can use this representation when accessing vectors that represent points or normals.
  • {r, g, b, a}: You can use this representation when accessing vectors that represent colors.
  • {s, t, p, q}: You can use this representation when accessing vectors that represent texture coordinates.
vec3 position;
position.x = 1.0f;
 
vec4 color;
color.r = 1.0f;
 
vec2 texcoord;
texcoord.s = 1.0f;

Operators and flow control

There are these operators:

++ -- + - ! * / < > <= >= == !== && ^^ || = += -= *= /=

And the next flow control statements:

for(Initial counter value;
Expression to be evaluated;
Counter increment/decrement value)
if (Expression to evaluate)
{
// Statement to execute if expression is true
}
else
{
// Statement to execute if expression is false
}
while( Expression to evaluate )
{
// Statement to be executed
}
if (Expression to evaluate )
{
// Statements to execute
}

Built-in functions

  • float radians(float degrees): Converts degrees to radians and returns radians
  • float degrees(float radians): Converts radians to degrees and returns degrees
  • float sin(float angle): Returns the sine of an angle measured in radians
  • float cos(float angle): Returns the cosine of an angle measured in radians
  • float tan(float angle): Returns the tangent of an angle measured in radians
  • float asin(float x): Returns the angle whose sine is x
  • float acos(float x): Returns the angle whose cosine is x
  • float atan(float y, float x): Returns the angle whose tangent is specified by the slope y/x
  • float atan(float slope): Returns the angle whose tangent is slope
  • float abs(float x): Returns the absolute value of x
  • float length(vec3 x): Returns the length of vector x
  • float distance(vec3 point0, vec3 point1): Returns the distance between point0 and point1
  • float dot(vec3 x, vec3 y): Returns the dot product between two vectors x and y
  • vec3 cross(vec3 x, vec3 y): Returns the cross product of two vectors x and y
  • vec3 normalize(vec3 x): Normalizes the vector to a length of 1 and then returns it
  • float pow(float x, float y): Calculates x to the power of y and return it
  • float min(float x, float y): Returns the minimum value between x and y
  • float max(float x, float y): Returns the maximum value between x and y

Storage qualifiers

  • Const: The const qualifier specifies a compile time constant or a read-only function parameter.
  • Attribute: The attribute qualifier specifies a linkage between a vertex shader and the main OpenGL ES 2.0 program for per-vertex data. Some examples of the types of variables where the attribute qualifier can be used are vertex position, vertex textures, and vertex normal.
  • Uniform: The uniform qualifier specifies that the value does not change across the primitive being processed. Uniform variables form the linkage between a vertex or fragment shader and the main OpenGL ES 2.0 application. Some examples of variables where the uniform qualifier would be appropriate are lighting values, material values, and matrices.
  • Varying: The varying qualifier specifies a variable that occurs both in the vertex shader and fragment shader. This creates the linkage between a vertex shader and fragment shader for interpolated data. These are usually values for the diffuse and the specular lighting that will be passed from the vertex shader to the fragment shader. Texture coordinates, if present, are also varying. The values of the diffuse and specular lighting, as well as textures, are interpolated or “varying” across the object the shader is rendering. Some examples of varying variables are the vertex texture coordinate, the diffuse color of the vertex, and the specular color of the vertex.
Const int NumberLights = 3;
attribute vec3 aPosition;
attribute vec2 aTextureCoord;
attribute vec3 aNormal;
uniform vec3 uLightAmbient;
uniform vec3 uLightDiffuse;
uniform vec3 uLightSpecular;
varying vec2 vTextureCoord;
varying float vDiffuse;
varying float vSpecular;

Otras funciones

  • The color from the currently active texture that matches the texture coordinates in the texture coordinate is found through the texture2D() function.
vec4 color = texture2D(sTexture, vTextureCoord);

Shaders en general

  • :!: El optimizador de GLSL borrará todas las variables que no uses.

Vertex Shader

Cambiar el tamaño de los puntos dibujados

gl_PointSize = 10.0;

Fragment Shader

Asignar un color fijo en el Vertex Shader

gl_FragColor = vec4(1,0,0,1);

Hacer el color algo más oscuro

gl_FragColor = texture2D(u_TextureUnit, v_TextureCoordinates) * vec4(0.5, 0.5, 0.5, 1);

Otros

Código ejemplo iOS

wiki2/ogl.txt · Última modificación: 2020/05/09 09:25 (editor externo)