glDrawArrays is basically “draw this contiguous range of vertices, using the data I gave you earlier”.
With glDrawElements, you pass in buffer containing the indices of the vertices you want to draw.
OpenGL ES defines the concept of buffers for exchanging data between memory areas. A buffer is a contiguous range of RAM that the graphics processor can control and manage. All the data that programs supply to the GPU should be in buffers. It doesn’t matter if a buffer stores geometric data, colors, hints for lighting effects, or other information.
The process of creating and using VBOs (Vertex Buffer Objects) should be familiar to you because it mimics the process used for textures: first generate a ‘‘name,’’ allocate space for the data, load the data, and then use glBindBuffer() whenever you want to use it.
glGenBuffers(). Ask OpenGL ES to generate a unique identifier for a buffer that the graphics processor controls.glBindBuffer(). Tell OpenGL ES to use a buffer for subsequent operations.glBufferData() or glBufferSubData(). Tell OpenGL ES to allocate and initialize sufficient contiguous memory for a currently bound buffer—often by copying data from CPU-controlled memory into the allocated memory.glDrawArrays() or glDrawElements(). Tell OpenGL ES to render all or part of a scene using data in currently bound and enabled buffers.glDeleteBuffers(). Tell OpenGL ES to delete previously generated buffers and free associated resources.-(void)createVBO { int numXYZElements=3; int numNormalElements=3; int numColorElements=4; int numTextureCoordElements=2; long totalXYZBytes; long totalNormalBytes; long totalTexCoordinateBytes; int numBytesPerVertex; // we need to generate a name for this VBO glGenBuffers(1, &m_VBO_SphereDataName); glBindBuffer(GL_ARRAY_BUFFER,m_VBO_SphereDataName); /* the size of each vertex in the lines 2ff. And in this case a vertex is the summation of its coordinates, texture coordinates, and the normal vector, as required. The total is now multiplied by the total number of vertices. */ numBytesPerVertex=numXYZElements; if(m_UseNormals) numBytesPerVertex+=numNormalElements; if(m_UseTexture) numBytesPerVertex+=numTextureCoordElements; numBytesPerVertex*=sizeof(GLfloat); /* allocates the memory on the GPU. The final parameter is a hint to the driver saying that the data is never expected to change. If you expect to update it, then use GL_DYNAMIC_DRAW. */ glBufferData(GL_ARRAY_BUFFER, numBytesPerVertex*m_NumVertices, 0, GL_STATIC_DRAW); /* Here we use memory mapping by calling glMapBufferOES(). This returns a pointer to a memory-mapped portion of the GPU’s data storage inside the application’s address space. The direct method uses the more traditional glBufferData(). */ GLubyte *vboBuffer=(GLubyte *)glMapBufferOES(GL_ARRAY_BUFFER, GL_WRITE_ONLY_OES); /* Now calculate the total number of bytes for each data type. */ totalXYZBytes=numXYZElements*m_NumVertices*sizeof(GLfloat); totalNormalBytes=numNormalElements*m_NumVertices*sizeof(GLfloat); totalTexCoordinateBytes=numTextureCoordElements*m_NumVertices*sizeof(GLfloat); // it is possible to copy the individual buffers one at a time by merely using memcpy() memcpy(vboBuffer,m_VertexData,totalXYZBytes); if(m_UseNormals) { vboBuffer += totalXYZBytes; memcpy(vboBuffer,m_NormalData,totalNormalBytes); } if(m_UseTexture) { vboBuffer += totalNormalBytes; memcpy(vboBuffer,m_TexCoordsData,totalTexCoordinateBytes); } // forces the actual copy action to execute glUnmapBufferOES(GL_ARRAY_BUFFER); m_TotalXYZBytes=totalXYZBytes; m_TotalNormalBytes=totalNormalBytes; }
-(bool)renderVBO { int i; static int counter=0; /* binds it, in the same way a texture is bound. This simply makes it the current object in use, until another is bound or this one is unbound with glBindBuffer(GL_ARRAY_BUFFER, 0);. */ glBindBuffer(GL_ARRAY_BUFFER, m_VBO_SphereDataName); glMatrixMode(GL_MODELVIEW); glDisable(GL_CULL_FACE); glEnable(GL_BLEND); glEnable(GL_DEPTH_TEST); /* enable the various data buffers as has been done in previous execute() methods. */ glEnableClientState(GL_VERTEX_ARRAY); if(m_UseNormals) glEnableClientState(GL_NORMAL_ARRAY); /* When using VBOs, the various pointers to the data blocks are the offset from the first element, which always starts at ‘‘address’’ of zero instead one in the app’s own address space. So, the vertex pointer starts at address of 0, while the normals are right after the vertices, and the texture coordinates are right after the normals. */ glVertexPointer(3,GL_FLOAT,0,(GLvoid*)(char*)0); glNormalPointer(GL_FLOAT,0,(const GLvoid*)(char*)(0+m_TotalXYZBytes)); glTexCoordPointer(2,GL_FLOAT,0, (const GLvoid*)((char*)(m_TotalXYZBytes+m_TotalNormalBytes))); if(m_UseTexture) { if(m_TexCoordsData!=nil) { glEnable(GL_TEXTURE_2D); glEnableClientState(GL_TEXTURE_COORD_ARRAY); if(m_TextureID!=0) glBindTexture(GL_TEXTURE_2D, m_TextureID); } } else { glDisableClientState(GL_TEXTURE_COORD_ARRAY); } /* Draw */ glDrawArrays(GL_TRIANGLE_STRIP, 0, (m_Slices+1)*2*(m_Stacks-1)+2); glDisable(GL_BLEND); glDisable(GL_TEXTURE_2D); return true; }
Creating textures is very similar to creating vertex buffers : Create a texture, bind it, fill it, and configure it.
Remember to use power of two textures (…, 128×128, 256×256, 1024×1024…). However, in standard OpenGL ES 2.0, textures don’t have to be square, but each dimension should be a power of two ( POT ). This means that each dimension should be a number like 128, 256, 512, and so on, but there is also a maximum texture size that varies from implementation to implementation but is usually something large, like 2048 x 2048.
In glTexImage2D, the GL_RGB indicates that we are talking about a 3-component color, and GL_BGR says how exactly it is represented in RAM. As a matter of fact, BMP does not store Red→Green→Blue but Blue→Green→Red, so we have to tell it to OpenGL. So imagine that we stored a BMP in a unsigned char* data variable, and unsigned int widht, height variables have the size:
// Create one OpenGL texture GLuint textureID; glGenTextures(1, &textureID); // "Bind" the newly created texture : all future texture functions will modify this texture glBindTexture(GL_TEXTURE_2D, textureID); // Give the image to OpenGL glTexImage2D(GL_TEXTURE_2D, 0,GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data); // Configure the texture glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
Para esto se usa un FBO. Básicamente creas el FBO, reemplazas el buffer donde renderizas por el del FBO creado y dibujas, luego enlazas otra vez el buffer por defecto y en el FBO tienes la textura.
Recuerda indicar el tamaño de píxels, haber creado anteriormente de las texturas que vas a usar en el fbo y tener el shader program activo.
Recuerda que para OpenGL el 0,0 está en la esquina de abajo a la izquierda. Si el sistema que usas cambia, es probable que la textura fbo aparezca volteada.
Para anidar transformaciones dentro de otras (al mover, escalar un elemento se mueva y escale igual el que tiene dentro), las figuras hijo aplicarán sus transformaciones a partir de la matriz del modelo de la padre.
Es decir:
float[] translateMatrix = new float[16]; setIdentityM(translateMatrix, 0); float[] scaleMatrix = new float[16]; setIdentityM(scaleMatrix, 0); if (mMatrix == null) { // Si no tiene padre inicializamos la matriz del modelo a la identidad setIdentityM(modelMatrix, 0); } else { // Si tiene padre usamos su matriz de modelo para aplicar las nuevas transformaciones for (int i = 0; i < 16; i++) modelMatrix[i] = mMatrix[i]; } // Creamos nuestras transformaciones translateM(translateMatrix, 0, posX, posY, posZ); scaleM(scaleMatrix, 0, sizeX, sizeY, sizeZ); float[] temp = new float[16]; // Aplicamos las transformaciones sobre la matriz del modelo (anterior o identidad) multiplyMM(temp, 0, modelMatrix, 0, translateMatrix, 0); for (int i = 0; i < 16; i++) modelMatrix[i] = temp[i]; multiplyMM(temp, 0, modelMatrix, 0, scaleMatrix, 0); for (int i = 0; i < 16; i++) modelMatrix[i] = temp[i];
You can address components in a vec4 type in the following ways:
vec3 position; position.x = 1.0f; vec4 color; color.r = 1.0f; vec2 texcoord; texcoord.s = 1.0f;
There are these operators:
++ -- + - ! * / < > <= >= == !== && ^^ || = += -= *= /=
And the next flow control statements:
for(Initial counter value;
Expression to be evaluated;
Counter increment/decrement value)
if (Expression to evaluate)
{
// Statement to execute if expression is true
}
else
{
// Statement to execute if expression is false
}
while( Expression to evaluate )
{
// Statement to be executed
}
if (Expression to evaluate )
{
// Statements to execute
}
Const int NumberLights = 3; attribute vec3 aPosition; attribute vec2 aTextureCoord; attribute vec3 aNormal; uniform vec3 uLightAmbient; uniform vec3 uLightDiffuse; uniform vec3 uLightSpecular; varying vec2 vTextureCoord; varying float vDiffuse; varying float vSpecular;
texture2D() function.vec4 color = texture2D(sTexture, vTextureCoord);
gl_PointSize = 10.0;
gl_FragColor = vec4(1,0,0,1);
gl_FragColor = texture2D(u_TextureUnit, v_TextureCoordinates) * vec4(0.5, 0.5, 0.5, 1);