====== Basic Pandas ====== ===== Basic navigation ===== See the first 3 rows: ''df.head(3)'' Valores únicos de una columna ''df..unique()'' Coger solo unas columnas: df[['1990', '2000', '2010']] Filter by a row value: is_1809 = df['Mes'] == 'Septiembre 18' df[['Mes', 'Categoria', 'Real']][is_1809] ==== To access data ==== ''DataFrame.at'' Access a single value for a row/column label pair ''DataFrame.iloc'' Access group of rows and columns by integer position(s) ''DataFrame.xs'' Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. ''Series.loc'' Access group of values using labels ===== Basic operations ===== Remove column from dataframe: ''df.drop('column_name', axis=1)''. Also: ''df.drop(columns=['Esperado acumulado'])'' Remove row by index: ''df.drop([0, 1])'' Eliminar una row cuando contenga valor en una columna (Categoria) vacío: df = df[df['Categoria'] != ''] ==== Pivot table ==== pd.pivot_table(df, index=['Mes'], columns=['Categoria'], values=['Real'], aggfunc='sum') ==== Change order ==== Re-Organize indexes: df.reindex(['Enero', 'Febrero', 'Marzo']) ==== Stack and Unstack ==== {{ :wiki2:pandas:reshaping_stack.png?300 |}} {{ :wiki2:pandas:reshaping_unstack.png?300 |}}